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SUMMARY

Heme biosynthesis consists of a series of eight enzy-
matic reactions that originate in mitochondria and
continue in the cytosol before returning to mitochon-
dria. Although these core enzymes are well studied,
additional mitochondrial transporters and regulatory
factors are predicted to be required. To discover
such unknown components, we utilized a large-scale
computational screen to identify mitochondrial
proteins whose transcripts consistently coexpress
with the core machinery of heme biosynthesis. We
identified SLC25A39, SLC22A4, and TMEM14C,
which are putative mitochondrial transporters, as
well as C1orf69 and ISCA1, which are iron-sulfur
cluster proteins. Targeted knockdowns of all five
genes in zebrafish resulted in profound anemia
without impacting erythroid lineage specification.
Moreover, silencing of Slc25a39 in murine erythroleu-
kemia cells impaired iron incorporation into protopor-
phyrin IX, and vertebrate Slc25a39 complemented an
iron homeostasis defect in the orthologous yeast
mtm1D deletion mutant. Our results advance the
molecular understanding of heme biosynthesis and
offer promising candidate genes for inherited
anemias.

INTRODUCTION

Biosynthesis of heme is a tightly orchestrated process that

occurs in all cells (Ponka, 1997). In most eukaryotes, heme

synthesis (Figure 1A) is initiated in the mitochondrion by d-ami-

nolevulinic acid synthase (ALAS), which catalyzes the reaction
Ce
between succinyl-CoA and glycine to form d-aminolevulinic

acid (ALA). ALA is exported to the cytosol, where it is converted

through a series of reactions to coproporphyrinogen III. This

molecule crosses the outer mitochondrial membrane, is oxidized

by the CPOX enzyme in the intermembrane space, and is subse-

quently imported back into the mitochondrial matrix and further

oxidized to protoporphyrin IX (PPIX). Heme synthesis is

completed by the incorporation of ferrous iron into PPIX by ferro-

chelatase (FECH). Though these eight core enzymes have been

extensively characterized, the means by which ALA and

porphyrin intermediates enter the mitochondrion, how heme

matures in the mitochondrion, and how it is then exported to

the cytosol are largely unknown.

Heme serves as a prosthetic group in many enzymes that are

involved in important processes such as electron transport,

apoptosis, detoxification, protection against oxygen radicals,

nitrogen monoxide synthesis, and oxygen transport (Ajioka

et al., 2006). The latter process places a special demand for

heme synthesis in the developing erythron, which needs to

generate vast amounts of the oxygen carrier protein hemoglobin.

In mammals, the regulation of heme synthesis differs between

erythroid and nonerythroid cells. In nonerythroid cells, heme

itself plays a key regulatory role and represses transcription

through feedback mechanisms (May et al., 1995). In red blood

cells, iron availability is the dominant factor (Ponka, 1997).

Erythroid and nonerythroid cells also express distinct isoforms

of the core heme biosynthesis enzymes. For example, the ubiq-

uitous form of ALAS is encoded by ALAS1, whereas a separate

gene ALAS2 encodes the erythroid-specific enzyme. These

different modes of regulation probably reflect the extraordinary

need for mitochondrial iron assimilation and heme synthesis

during erythroid maturation.

In recent years, several new genes involved in heme synthesis

have been discovered. Genetic screening in zebrafish revealed

that Mitoferrin-1 (SLC25A37), a vertebrate homolog of the yeast

mitochondrial iron importers MRS3/MRS4, plays an important
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Figure 1. Identifying Candidate Genes for Heme Biosynthesis Using Expression Screening

(A) The eight known enzymes of heme biosynthesis pathway (left) define the query pathway. Using a rank-based statistic, each gene g is assigned a probability of

coexpression qgd in each microarray data set d (black/yellow columns). Data sets in which the heme biosynthesis enzymes are themselves tightly coexpressed

are assigned larger weights wd (blue vertical bars), which are then used to integrate the coexpression information from all data sets (black/yellow matrix, right) into

a final probability pg (blue horizontal bars).

(B) The coexpression matrix for the 1426 data sets used in this study (columns), over 1032 mitochondrial genes (rows). Yellow indicates strong coexpression.

Right, a magnified portion of this matrix, with data set weights (top) and integrated probabilities (right).
role in heme metabolism in erythroid cells (Shaw et al., 2006a). A

more ubiquitously expressed SLC25A37 paralog, SLC25A28, is

important for heme synthesis in nonerythroid cells (Paradkar

et al., 2009; Shaw et al., 2006a). Unbiased functional screening

methods have also, rather surprisingly, implicated genes

involved in iron-sulfur (Fe-S) cluster synthesis as important for

heme production. In yeast, deletions of several genes that are

important for mitochondrial Fe-S cluster assembly negatively

affect heme synthesis (Lange et al., 2004). Deletion of the mito-

chondrial ATP-binding cassette transporter ABCB7, which is

an essential component of the Fe-S cluster export machinery,

results in reduced heme levels in mouse erythrocytes (Pondarre

et al., 2007). A study in the zebrafish mutant shiraz revealed that

a mutation in the Fe-S cluster assembly gene glutaredoxin 5

(GLRX5) affects heme biosynthesis through the cytosolic iron

responsive protein 1 (IRP1) (Wingert et al., 2005). Under low-

iron conditions, diminished Fe-S cluster assembly induces

IRP1 to lose its Fe-S cluster, resulting in binding to iron-respon-

sive elements (IRE) and subsequent posttranslational regulation

of genes involved in iron and heme homeostasis (Muckenthaler

et al., 2008; Rouault, 2006). Wingert et al. showed that impaired
120 Cell Metabolism 10, 119–130, August 6, 2009 ª2009 Elsevier Inc
heme production in the zebrafish shiraz mutant was due to the

constitutive repression of ALAS2 by IRP1, thereby inhibiting

ALAS2 translation and subsequent production of heme. This

study confirms the intimate relation between Fe-S cluster

synthesis and heme biosynthesis (Lill and Mühlenhoff, 2008;

Muckenthaler et al., 2008; Rouault, 2006).

Several human diseases have been linked to genes involved in

heme biosynthesis. Mutations in any of the eight core enzymes

except ALAS (Figure 1A) lead to various forms of porphyria

(Sassa, 2006). Defects in ALAS2, ABCB7, GLRX5, and

SLC25A38 are each associated with different forms of sidero-

blastic anemias (Allikmets et al., 1999; Camaschella et al., 2007;

Cotter et al., 1992; Guernsey et al., 2009), which are character-

ized by mitochondrial iron overload and impaired heme

synthesis. Aberrant splicing of SLC25A37 (Shaw et al., 2006b),

deletion of IRP2 (Cooperman et al., 2005), and C-terminal dele-

tions in ALAS2 (Whatley et al., 2008) are associated with a variant

form of erythropoietic protoporphyria. Other human disorders

involving defects in iron homeostasis and heme metabolism

exist, and identifying the genes responsible is vital to under-

standing their nature and providing new ways for treatment.
.
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Aiming to systematically identify new components of the heme

biosynthesis pathway, we applied a computational screening

algorithm that searches a large collection of microarray data

sets for genes that are consistently and specifically coexpressed

with the eight heme biosynthesis genes, depicted in Figure 1A.

Applying this computational screening technique to a compen-

dium of�1100 mitochondrial genes yielded a collection of strong

candidate genes. We used zebrafish as an in vivo vertebrate

model system to test five high-scoring candidates. We found

that all five genes are required for proper synthesis of hemo-

globin, indicating high specificity of our computational predic-

tions. We chose to study one candidate, the solute carrier

SLC25A39, in greater detail in mouse and yeast, and our results

support a role for this gene in maintaining mitochondrial iron

homeostasis and regulating heme levels.

RESULTS

Using microarray technology, it is possible to measure the corre-

lation of expression patterns on a whole-genome scale (Quack-

enbush, 2001). However, expression patterns may be correlated

in a particular experiment for trivial reasons such as stress

responses or adaptation to cell culture conditions (Cahan

et al., 2007), so expression correlation does not in itself imply

a close functional relationship. To address this problem and

improve specificity, we reasoned that genes coexpressed

consistently across many independent data sets, which interro-

gate different experimental conditions, are more likely to be

functionally related. Based on this principle, we developed a

computational technique that we call expression screening that

integrates information from thousands of microarray data sets

to discover genes that are specifically coexpressed with a given

query pathway, such as mitochondrial heme biosynthesis

(Figure 1A). We assembled a collection of 1426 mouse and

human Affymetrix microarray datasets (�35,000 microarrays)

representing a wide range of experimental conditions (see

Experimental Procedures). For each data set in this collection,

expression screening scores every gene for coexpression with

the query pathway by using a rank-based statistic. Importantly,

we also compute a measure of the intracorrelation of the query

pathway in each data set, reflecting the extent to which the query

pathway is transcriptionally regulated. Finally, we integrate the

coexpression information from all data sets weighted by the

query pathway intracorrelation. This weighting scheme allows

the most ‘‘relevant’’ data sets to contribute the most to the final

result and also permits the identification of biological contexts

where the coexpression occurs.

A Large-Scale Computational Screen Reveals Genes
Essential for Heme Biosynthesis
We applied expression screening to the eight well-characterized

heme biosynthesis enzymes. Because proteins involved in heme

biosynthesis are likely mitochondrial, we chose to limit our

screen to a high-quality inventory of �1100 nuclear genes en-

coding the mitochondrial proteome (Pagliarini et al., 2008). A

fraction of these showed strong coexpression with the heme

enzymes in a small number of data sets (Figure 1B). Among

the top five coexpressed genes identified by our screen, not

counting the heme biosynthesis enzymes themselves, four had
Cel
previously been implicated in heme biosynthesis (Table 1). These

were ABCB6, the only known transporter for a porphyrin inter-

mediate (Krishnamurthy et al., 2006); SLC25A37, a mitochondrial

solute carrier that supplies iron to mitochondria for heme and Fe/

S biogenesis (Shaw et al., 2006a); ABCB10, which is induced by

GATA1 during erythroid differentiation and enhances hemoglobi-

nization (Shirihai et al., 2000); and GLRX5, which regulates heme

synthesis through a feedback loop involving IRP1 (Wingert et al.,

2005). At somewhat lower confidence levels, we found genes

upregulated in red blood cells, reflecting the fact that erythropoi-

esis drives most of the coexpression signal for this pathway.

Several top-scoring candidates had not previously been impli-

cated in heme biosynthesis or mitochondrial iron homeostasis.

Because of the membrane transport events involved in heme

synthesis (Figure 1A), we were particularly interested in orphan

solute transporters. For follow-up studies, we selected three

genes that we considered possible transporters: TMEM14C, a

small transmembrane protein, and SLC25A39 and SLC22A4,

members of the solute carrier family. We also selected ISCA1

(yeast ISA1) and C1orf69 (yeast IBA57), which are known to

participate in the maturation of Fe-S clusters essential for the

activity of a specific subset of mitochondria proteins (Gelling

et al., 2008; Johnson et al., 2005) but have not been directly

implicated in heme biosynthesis.

In addition to predicting new components of the query

pathway, expression screening also identifies the data sets in

which coexpression occurs, thus suggesting biological contexts

in which the pathway is active. For heme biosynthesis, the high-

est-scoring data set is a time course analysis of erythrocytes

differentiating in vitro from primary human hematopoietic pro-

genitor cells (Keller et al., 2006) (Figure 2A). Here, the eight

heme biosynthesis enzymes are strongly induced at day 9, and

at this time point, the candidates also reach peak expression,

suggesting that they function during late erythrocyte differentia-

tion, concurrent with hemoglobin synthesis. In contrast, early

hematopoietic markers such as CD34 and GATA2 are expressed

at early time points in this data set. In another high-scoring data

set, we found upregulation of the candidates in Nix�/� mouse

spleens (Figure 2B), which exhibit increased numbers of erythro-

cyte precursors due to a defect in mitochondria clearance during

terminal erythrocyte differentiation (Diwan et al., 2007; Sandoval

et al., 2008). Conversely, all candidates were downregulated

when erythrocyte differentiation is abolished in Rb�/� fetal liver

(Figure 2C) (Spike et al., 2007). Several multiple-tissue data

sets were also high scoring due to strong expression in erythro-

poietic tissues such as bone marrow (Figure 2D). These contexts

all reflect red blood cell biology, as expected. However, we also

found regulation of the heme pathway in activated white blood

cells and in some lymphomas, suggesting a previously unrecog-

nized importance of heme biosynthesis in these contexts (Table

S1 available online).

In Situ Expression Analysis of Five Candidate Genes
in Zebrafish Embryos
To investigate the biological role of the five selected genes in red

blood cell development, we used the zebrafish (Danio rerio),

which serves as an excellent in vivo model system for studying

hematological disorders (Shafizadeh and Paw, 2004). To identify

zebrafish orthologs of the five candidates, we used reciprocal
l Metabolism 10, 119–130, August 6, 2009 ª2009 Elsevier Inc. 121
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Table 1. Top 30 Coexpressed Mitochondrial Genes Discovered by Expression Screening

Symbol Description Probability Query Heme Fe-S Follow-Up

UROD uroporphyrinogen decarboxylase 1.00 X X

HMBS hydroxymethylbilane synthase 1.00 X X

FECH ferrochelatase (protoporphyria) 1.00 X X

ALAD aminolevulinate, delta-, dehydratase 1.00 X X

GLRX5 glutaredoxin 5 1.00 X X

PPOX protoporphyrinogen oxidase 1.00 X X

ALAS2 aminolevulinate, delta-, synthase 2 1.00 X X

ABCB6 ATP-binding cassette, subfamily B (MDR/TAP), member 6 1.00 X

UROS uroporphyrinogen III synthase (congenital erythropoietic porphyria) 0.99 X X

CPOX coproporphyrinogen oxidase 0.99 X X

SLC25A37 solute carrier family 25, member 37 0.99 X

PRDX2 peroxiredoxin 2 0.99

ABCB10 ATP-binding cassette, subfamily B (MDR/TAP), member 10 0.99 X

HAGH hydroxyacylglutathione hydrolase 0.98

TMEM14C transmembrane protein 14C 0.97 X

SLC25A39 solute carrier family 25, member 39 0.96 X

TXNRD2 thioredoxin reductase 2 0.96

NT5C3 50-nucleotidase, cytosolic III 0.93

NCOA4 nuclear receptor coactivator 4 0.85

SLC22A4 solute carrier family 22 (organic cation transporter), member 4 0.81 X

UCP2 uncoupling protein 2 (mitochondrial, proton carrier) 0.80

ISCA1 iron-sulfur cluster assembly 1 homolog (S. cerevisiae) 0.71 X X

C10orf58 chromosome 10 open reading frame 58 0.68

HK1 hexokinase 1 0.68

ISCA2 iron-sulfur cluster assembly 2 homolog (S. cerevisiae) 0.62 X

MCART1 mitochondrial carrier triple repeat 1 0.62

FAHD1 fumarylacetoacetate hydrolase domain containing 1 0.59

COX6B2 cytochrome c oxidase subunit Vlb polypeptide 2 (testis) 0.55

ATPIF1 ATPase inhibitory factor 1 0.49

C1orf69 RIKEN cDNA A230051G13 gene 0.45 X X

Query, genes used as input for screening; Heme, genes known to be required for functional heme biosynthesis; Fe-S, genes involved in iron-sulfur

cluster assembly; Follow-up, candidates selected for further study.
protein-level BLAST. We were able to predict clear zebrafish or-

thologs for SLC25A39, TMEM14C, C1orf69, and ISCA1.

However, mammalian SLC22A4 exhibited close sequence simi-

larity with zebrafish slc22a4 and slc22a5, and a multiple align-

ment of these genes between mouse, human, and fish did not

resolve the orthology (Figure S1). Therefore, we included both

possible orthologs for functional follow-up.

Whole-mount in situ hybridization of zebrafish embryos at

24 hr postfertilization (hpf) showed clear localization of mRNA

for slc25a39, tmem14c, and c1orf69 (Figure 3) to the interme-

diate cell mass (ICM), the functional equivalent of mammalian

yolk sac blood islands. Transcripts for isca1, slc22a4, and

slc22a5 did not show clear tissue-restricted expression in the

developing zebrafish embryo (Figure 3); however, real-time

quantitative RT-PCR analysis indicated very low levels of

slc22a4 and slc22a5 mRNA in 24 hpf embryos (data not shown),

possibly explaining absent staining in the ICM by the less-sensi-

tive in situ hybridization method. Real-time qRT-PCR analysis of

isca1 mRNA, on the other hand, showed high overall expression
122 Cell Metabolism 10, 119–130, August 6, 2009 ª2009 Elsevier In
at 24 hpf (data not shown), indicating that isca1 is not specific to

the ICM. To clearly delineate the ICM, slc4a1, an erythroid-

specific cytoskeletal protein (Paw et al., 2003), was included in

the analysis (Figure 3A). We did not detect staining for any of

these genes in zebrafish cloche (clo) mutants, which lack hema-

topoietic and vascular progenitors (Stainier et al., 1995), indi-

cating specificity of the in situ hybridization results (slc4a1,

Figure 3B; remaining genes, data not shown).

Knockdown in Zebrafish Results in Profound Anemia
without Affecting Erythroid Specification
To evaluate a possible function in erythropoiesis, we disrupted

mRNA expression of each candidate gene in developing zebra-

fish embryos using splice-blocking morpholino oligomers (Sum-

merton and Weller, 1997). These knockdowns resulted in

profound anemia, as indicated by the lack of hemoglobinized

cells after staining the embryos with o-dianisidine (Figure 4), for

all candidates except slc22a4 (Figure 4D). Even at very high

concentration, the slc22a4-targeting morpholino did not induce
c.
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Figure 2. Microarray Data Sets in which the Heme Biosynthetic Pathway Is Regulated

(A) Time series gene expression of heme biosynthesis enzymes and five selected candidates (see text) during erythroid differentiation.

(B) Gene expression in Nix�/� and wild-type (WT) mouse spleen.

(C) Gene expression in Rb�/� and wild-type (WT) mouse fetal liver.

(D) Gene expression in a panel of mouse tissues.

Red indicates high expression; blue, low expression; gray, missing values. GSE, NCBI Gene Expression Omnibus accession number.
anemia. Therefore, the anemia resulting from slc22a5 knock-

down suggests that this gene and not slc22a4 is the functional

zebrafish ortholog of mammalian SLC22A4. A quantitative

enumeration of the anemia in control and morphant embryos

for each silenced gene is displayed in Figure S2. With the excep-

tion of anemia, the morphant embryos generally did not exhibit

other gross developmental abnormalities at the chosen doses

of morpholino. RT-PCR analysis of RNA isolated from the mor-

phant embryos showed alternate mRNA species (eventually

leading to nonsense-mediated mRNA decay) being generated

for slc25a39, slc22a4, slc22a5, tmem14c, and c1orf69, but not

for WT uninjected embryos (Figures 4B–F), demonstrating accu-

rate gene targeting of the respective morpholinos. Off-target

effects were excluded by normal RT-PCR products for the

b-actin (actb) control. Because we could not detect alternate

mRNA species in embryos injected with the isca1-targeted mor-

pholino, we measured isca1 mRNA expression by real-time

qRT-PCR. Embryos injected with the isca1 morpholino showed
C

a 3-fold downregulation compared to WT uninjected embryos

(Figure 4G). Injection of a nonspecific standard control morpho-

lino did not affect isca1 mRNA expression levels (Figure 4G).

To show that the anemic phenotype observed by morpholino

knockdown is not merely due to a lack of erythrocyte progenitors

and is erythroid lineage specific, we stained morphant embryos

for the erythroid lineage-specific gene aE3-globin (hbae3) at 24

and 48 hpf and for the myeloid lineage-specific gene myeloper-

oxidase (mpo) (Bennett et al., 2001) at 48 hpf by whole-mount

in situ hybridization. The results indicate that expression of

mpo and hbae3 at 24 hpf was overall comparable to wild-type

embryos, indicating that initial specification of erythropoiesis

and myelopoiesis are not perturbed by deficiency of our candi-

date genes (Figure S3). A slight decrease in hbae3 levels was

observed at 48 hpf for all candidates except slc22a4. This prob-

ably reflects reduced viability of a number of erythroid cells, an

expected consequence of silencing genes that perform impor-

tant functions in erythroid cells. In summary, the loss of heme
ell Metabolism 10, 119–130, August 6, 2009 ª2009 Elsevier Inc. 123
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staining seen in Figure 4 is not due to defective erythroid lineage

specification, and knockdowns do not affect other hematopoi-

etic lineages such as myeloid cells, implicating erythroid-specific

roles for the candidates.

Slc25a39 Is Highly Expressed in Mouse Hematopoietic
Tissues
We chose to further investigate the function of SLC25A39

because of its sequence homology to the S. cerevisiae gene

MTM1, which has previously been implicated in iron homeo-

stasis (Yang et al., 2006). To characterize its function in

mammals, we first investigated the tissue distribution and devel-

opmental expression of murine Slc25a39. Northern blot analysis

revealed abundant Slc25a39 mRNA expression in the hemato-

poietic organs fetal liver, adult bone marrow, and spleen (Fig-

ure 5A). Significant mRNA expression was also observed in the

testis and kidneys (Figure 5A). This expression profile is largely

consistent with that observed in microarray data (Figure 2D).

We also found that Slc25a39 is highly expressed in primitive

mouse erythroblasts that fill yolk sac blood islands at early

somite pair stages (Figure 5B) and in fetal liver (midgestation at

day E12.5), the site of definitive erythropoiesis (Figures 5C and

5D). This expression pattern is concordant with slc25a39 stain-

ing in the zebrafish ICM and suggests that this gene functions

in both primitive and definitive erythropoiesis in mammals.

A B

C D

E F

G H

Figure 3. Expression of Candidate Genes in Zebrafish Blood Islands

Whole-embryo in situ hybridization was performed on embryos at 24 hpf.

(A) slc4a1 was used as control to delineate the intermediate cell mass

(ICM, indicated by arrows).

(B) Cloche (clo) embryos were used to show specificity of the hybridizations.

(C–H) Candidates identified in this study.
124 Cell Metabolism 10, 119–130, August 6, 2009 ª2009 Elsevier In
Slc25a39 Is Required for Heme Synthesis,
but Silencing Does Not Cause Porphyria
The reduced number of heme-positive cells seen in zebrafish

slc25a39 knockdowns could be caused by a defect in mitochon-

drial iron availability. To address this issue and investigate the

biochemical role of Slc25a39 in more detail, we labeled differen-

tiating wild-type and Slc25a39 siRNA-treated mouse erythroleu-

kemia (MEL) cells with 59Fe-saturated transferrin and assayed for
59Fe incorporation into heme. We confirmed effective silencing

of Slc25a39 at the protein level by using western analysis

(Figure 5E). Wild-type cells treated with nonspecific siRNA oligos

efficiently incorporated 59Fe into heme; however, Slc25a39-

silenced cells showed a 4-fold reduction in 59Fe-labeled heme,

whereas total mitochondrial 59Fe remained unaffected, thus

excluding its function as a mitochondrial iron importer (Figure 5F).

As a positive control, we also performed siRNA knockdown of

the iron transporter Slc25a37 (Shaw et al., 2006a), which resulted

in marked reduction of total mitochondrial 59Fe as well as heme

incorporation of 59Fe (Figure 5F). Simultaneous silencing of

Slc25a39 and Slc25a37 did not affect mitochondrial iron content

or heme formation more than silencing Slc25a37 alone, indi-

cating that Slc25a37 is epistatic to Slc25a39 for mitochondrial

iron import. These data show that Slc25a39 is essential for

heme biosynthesis in mammals.

To further delineate the role of SLC25A39 in heme biosyn-

thesis, we asked whether its loss in zebrafish embryos causes

a porphyric phenotype. Embryos injected with a morpholino tar-

geting ferrochelatase clearly exhibited circulating, porphyric red

blood cells (Figure 5H), but wild-type embryos and embryos in-

jected with a morpholino targeting slc25a39 did not (Figures 5G

and 5I). Because defects in any of the terminal steps of heme

biosynthesis cause accumulation of porphyrin intermediates,

this result suggests that SLC25A39 is involved in the early steps

of heme synthesis or in the regulation of ALA synthase function.

Vertebrate SLC25A39 Complements Mitochondrial Iron
Homeostasis Defects in the Yeast mtm1D Mutant
SLC25A39 has clear sequence homology to the S. cerevisiae

gene MTM1, for which a deletion strain mtm1D has been charac-

terized that exhibits altered iron homeostasis. Loss of MTM1 in

yeast alters mitochondrial iron bioavailability such that iron gains

access to the catalytic site of manganese superoxide dismutase

2 (Sod2p), thereby inactivating the enzyme (Yang et al., 2006).

MTM1 also genetically interacts with the yeast mitochondrial

iron importers MRS3 and MRS4, which are orthologs of the

human SLC25A37 (Yang et al., 2006). In addition, mtm1D

mutants exhibit loss of mitochondrial DNA, elevations in Cu/Zn

Sod1p activity, and an increased level of the mitochondrial

Isu1p/Isu2p proteins needed for Fe-S cluster biogenesis (Luk

et al., 2003; Yang et al., 2006; Naranuntarat et al., 2009). We ex-

pressed zebrafish slc25a39 or mouse Slc25a39 in yeast mtm1D

mutants and found that these genes complement low-Sod2p

and high-Sod1p activity, as well as the elevated protein levels

of Isu1/2 (Figures 6A and 6B). This complementation was

reversed upon subsequent shedding of the plasmid-derived

clones with 5-FOA treatment, showing specificity of the assay

(Figures 6A and 6B). We also observed that expression of zebra-

fish slc25a39 protected against loss of mitochondrial DNA (and

concomitant loss of genes important for mitochondrial
c.
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Figure 4. Morpholino Knockdown of Candidate Genes in Zebrafish Results in Profound Anemia

WT zebrafish embryos were injected at the one-cell stage with the respective morpholinos and stained at 48 hpf with o-dianisidine to detect hemoglobinized cells.

(A) Uninjected (WT) embryos show normal hemoglobinization as indicated by dark brown staining on the yolk sac (arrow).

(B–G) Morpholino-injected embryos. Accurate morpholino gene targeting was verified by RT-PCR (slc25a39, slc22a4, slc22a5, tmem14c, and c1orf69) or real-

time quantitative RT-PCR (isca1) on cDNA from uninjected (WT) or morpholino-injected (mo) embryos. b-actin (actb) was used as a control for off-target effects in

the RT-PCR. For RT-PCR, (ctrl) indicates no cDNA template control. For real-time quantitative RT-PCR, (ctrl mo) indicates embryos injected with a standard

control morpholino.
respiration) upon subsequent deletion of MTM1, as shown by a

growth assay on nonfermentable carbon sources (Figure 6C).

We conclude that SLC25A39 is the functional vertebrate ortho-

log of yeast MTM1, supporting an important role for this gene

in iron homeostasis.

DISCUSSION

Expression screening (Figure 1) is based on the simple principle

that genes exhibiting a consistent correlation of mRNA levels

across multiple experiments are more likely to be functionally

related. We applied this method to the heme biosynthesis

pathway and, as proof of principle, recovered four genes

recently implicated in heme biosynthesis (GLRX5, ABCB10,

ABCB6, and SLC25A37) among the top five predictions. This

indicates high specificity of our expression screening predic-

tions. In addition, a number of genes previously not associated

with heme biosynthesis and mitochondrial iron homeostasis

were identified. In some cases, their function was completely

unknown prior to this study, whereas others, such as ISCA1,

have been studied intensively but have not been linked to

heme synthesis before. Remarkably, all five genes selected for

follow-up studies resulted in an anemic phenotype when

silenced in zebrafish embryos. We chose to further focus our
Ce
efforts on characterizing SLC25A39, and our data support an

important role for this mitochondrial solute carrier in mammalian

heme synthesis. These results warrant further studies of the re-

maining high-scoring candidates (Table 1).

Not all genes that showed strong coexpression in the screen

are likely to be directly involved in heme biosynthesis. Some

are presumably merely red blood cell specific, which is reason-

able given that our screen was largely driven by erythrocyte

gene expression. In this category, we find hexokinase 1 (HK1),

which catalyzes the initial step in erythrocyte glycolysis, and

glyoxalase II (HAGH), which is involved in synthesis of the antiox-

idant glutathione. We also detected several proteins thought to

participate in erythrocyte oxidant defense, including PRDX2

(Low et al., 2007) and TXNRD2. In addition, we identified

C10orf58, an uncharacterized protein structurally similar to the

thioredoxins, which could represent a hitherto unknown compo-

nent of antioxidant defense.

Our large-scale computational analysis uncovered strong co-

expression between heme biosynthesis and the Fe-S cluster

assembly proteins ISCA1, ISCA2, and C1orf69. A functional

link between these two processes was recently discovered in

zebrafish erythrocytes, in which defects in the Fe-S cluster

assembly protein GLRX5 disrupt heme synthesis by inhibiting

translation of ALAS2 in erythrocytes through IRP1 (Wingert
ll Metabolism 10, 119–130, August 6, 2009 ª2009 Elsevier Inc. 125
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Figure 5. Mouse Slc25a39 Is Expressed in Hematopoietic Tissues and Is Important for Heme Biosynthesis

(A) Mouse tissue northern blot analysis of Slc25a39 expression.

(B) Mouse Slc25a39 transcripts are localized to blood islands of the yolk sac at early somite stages (E8.5, arrows).

(C and D) Slc25a39 transcripts accumulate most abundantly in the liver, where expression is heterogeneous (E12.5).

(E and F) MEL cells were differentiated for 2 days in media containing 1.5% DMSO prior to (E) transient transfection with myc-tagged Slc25a39 or (F) silencing of

Slc25a39 (si-Slc25a39) and/or Slc25a37 (si-Slc25a37) using siRNA oligos. Assays were performed after 2 additional days of differentiation. si-NS indicates

silencing using nonspecific control oligos.

(E) Representative western blot using anti-myc (a-myc-Slc25a39) and anti-Slc25a37 antibodies. Equal loading was verified by anti-tubulin.

(F) MEL cells were metabolically labeled with 59Fe conjugated to transferrin, and total mitochondrial iron (59Fe-Mito) and iron in heme (59Fe-Heme) were deter-

mined. Results shown are from two independent experiments assayed in duplicate; error bars denote standard deviation.

(G–I) Representative photos of (G) an uninjected, wild-type control zebrafish embryo, (H) a zebrafish embryo injected with a ferrochelatase-specific morpholino, or

(I) a zebrafish embryo injected with a slc25a39-specific morpholino. Arrow indicates porphyric red blood cells in circulation.
et al., 2005). This regulatory mechanism is thought to act as a

cellular iron sensor that prevents synthesis of the toxic porphy-

rins when iron is scarce. However, there are other plausible

reasons for synchronizing Fe-S cluster assembly with heme

synthesis. For example, both heme and Fe-S clusters serve as

cofactors in electron-transferring proteins such as those in the

respiratory chain. An Fe-S cluster is also required by mamma-

lian ferrochelatase, which catalyzes the final step of heme

synthesis. Moreover, the three Fe-S cluster synthesis proteins
126 Cell Metabolism 10, 119–130, August 6, 2009 ª2009 Elsevier In
identified in our screen (ISCA1, ISCA2, and C1orf69) appear to

specialize in assembling Fe-S clusters on a subset of mitochon-

drial enzymes, including the citric acid cycle enzyme aconitase

and lipoic acid synthetase, which produces an essential

cofactor for the pyruvate dehydrogenase complex (Gelling

et al., 2008; Lill and Mühlenhoff, 2008). Impaired assembly of

Fe-S clusters on these enzymes could hamper the production

of succinyl-CoA, which is required in vast amounts for erythroid

heme synthesis (Figure 1A; Shemin et al., 1955). Further
c.
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Figure 6. Vertebrate SLC25A39 Is the Ortholog of Yeast MTM1 and Is Involved in Mitochondrial Iron Homeostasis

(A and B) mtm1D strains were transformed with URA3-based plasmids for expressing (A and B) S. cerevisiae MTM1, (A) zebrafish slc25a39, or (B) mouse

Slc25a39. 5-FOA indicates transformants induced to shed the plasmids by growth on 5-fluoroorotic acid. Whole-cell lysates of the transformants, 5-FOA deriv-

atives, and the parental WT and mtm1D cells were subjected to (top) native gel electrophoresis and NBT staining for SOD (SOD2 and SOD1) activity and (bottom)

to SDS-PAGE and immunoblotting for Sod2p, Pgk1 (loading control), and Isup (sum of Isu1p and Isu2p).

(C) WT strain transformed with either empty pRS426-ADH vector or zebrafish slc25A39 was subjected to MTM1 deletion and tested for mitochondrial DNA func-

tion by growth on fermentable (glucose) versus nonfermentable (glycerol) carbon sources.

Results shown represent two independent colonies.
investigation is needed to determine which of these, or other,

hypotheses are correct.

At the outset, one of this study’s goals was to identify trans-

porters responsible for trafficking heme precursors between

the mitochondrial and cytosolic compartments. Expression

screening implicated a handful of mitochondrial proteins with

transmembrane domains that might be candidates for such

transporters. One of these is the mitochondrial solute carrier

SLC22A4. This gene is highly homologous to the carnitine trans-

porter SLC22A5 (OCTN2) but has low affinity for carnitine and

does not rescue carnitine deficiency in mice (Zhu et al., 2000).

SLC22A4 has been suggested to protect red blood cells from

oxidative stress (Grundemann et al., 2005), and a previous study

found that terminal differentiation of MEL cells is disrupted upon

SLC22A4 depletion, although the cause of this is unclear (Naka-

mura et al., 2007). The protein is present in both the mitochon-

drial and plasma membranes (Lamhonwah and Tein, 2006). We

also identified TMEM14C, a short mitochondrial transmembrane

protein (112 amino acids). This gene is found only in vertebrate

animals; it exhibits strong expression in zebrafish ICM and

appears essential for functional heme biosynthesis in erythro-

cytes, making this a strong candidate for further studies. An

additional high-scoring gene is MCART1, also a mitochondrial

solute carrier. Its role in erythrocyte biology remains to be estab-

lished.

In the current study, we chose to focus our efforts on the solute

carrier SLC25A39. This gene localizes to the mitochondrial

membrane (Luk et al., 2003; Yu et al., 2001), and we demonstrate

that it is the functional vertebrate ortholog of yeast MTM1. MTM1

was previously described as a manganese transporter (Luk et al.,

2003), but mtm1D mutants do not show altered mitochondrial

manganese levels, and more recent data suggest that its primary
Ce
role is in mitochondrial iron homeostasis (Luk et al., 2003). Dele-

tion of MTM1 causes mitochondrial iron overload (Yang et al.,

2006) and upregulation of the Fe-S scaffold proteins Isu1 and

Isu2 (Naranuntarat et al., 2009), phenotypes that we found to

be complemented by vertebrate SLC25A39. Here, we show

that slc25a39 is required for heme synthesis in zebrafish.

Furthermore, our data in MEL cells demonstrate that mouse

Slc25a39 is not an iron transporter, given that mitochondrial

iron levels were unaffected when Slc25a39 expression was

silenced by siRNA. However, silencing of Slc25a39 did affect

iron incorporation into heme to an extent similar to that of

Slc25a37, the principal mitochondrial iron importer in erythroid

cells (Shaw et al., 2006a).

Based on our data in MEL cells, silencing SLC25A39 either

impairs incorporation of iron into PPIX by ferrochelatase or

inhibits PPIX synthesis altogether; however, morpholino knock-

down of slc25a39 in zebrafish did not result in a porphyric pheno-

type, arguing against a direct participation of SLC25A39 in the

terminal steps of protoporphyrin synthesis. Thus, our data

suggest a role for SLC25A39 either in early heme synthesis or

in its regulation via ALA synthase. In vertebrate erythrocytes,

availability of Fe-S clusters regulates ALAS2 through IRP1,

demonstrated by recent work focusing on the zebrafish mutant

shiraz (Wingert et al., 2005). This mutant harbored mutations in

the Fe-S cluster enzyme grx5, which abolished heme biosyn-

thesis. Interestingly, the observed phenotypic consequences

of defects in GLRX5 and SLC25A39 are strikingly similar in

both yeast and vertebrates; in zebrafish, neither defects in

slc25a39 nor in grx5 result in porphyria (Figure 5; Wingert et al.,

2005), and yeast mtm1D or grx5D cells both accumulate mito-

chondrial iron (Yang et al., 2006) and exhibit a marked increase

in the Fe-S scaffold proteins Isu1/Isu2 (Figure 6; Bellı́ et al.,
ll Metabolism 10, 119–130, August 6, 2009 ª2009 Elsevier Inc. 127
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2004). In general, defects in Fe-S cluster assembly in yeast result

in mitochondrial iron overload, whereas heme deficiency due to

dysfunctional ALA synthase does not (Crisp et al., 2003). Based

on our and previously published observations, we hypothesize

that vertebrate SLC25A39 may be involved in Fe-S cluster

synthesis and that the observed effects on heme synthesis

(Figures 4B and 5F) might be mediated through IRP1, analogous

to what has been described for GLRX5 (Wingert et al., 2005),

though future experiments will be required to critically test this

hypothesis.

In summary, this study demonstrates that large-scale integra-

tion of gene expression data has the potential to identify addi-

tional components of partially known, transcriptionally regulated

pathways with high precision. Our computational analysis and

follow-up studies have identified and confirmed roles for five

mitochondrial proteins in heme biosynthesis; revealed tightly

coordinated expression of the iron sulfur cluster assembly and

heme biosynthesis pathways in maturing erythrocytes; and

specifically predicted a primary function for SLC25A39 in Fe-S

cluster assembly, which is required to maintain functional

heme biosynthesis in developing erythrocytes. While the precise

molecular function of this and other proteins identified herein

remains to be addressed in full, our findings open up new

avenues of research into erythrocyte biology and provide candi-

date genes for human hematological disorders.

EXPERIMENTAL PROCEDURES

Data Sets

All microarray data sets for five Affymetrix platforms (human U133A, U133+;

mouse U74Av2, M430, and M430A) containing at least six arrays were down-

loaded from the NCBI Gene Expression Omnibus (GEO) (Barrett et al., 2007)

during March 2008. Overlapping data sets were merged, resulting in 1426

distinct data sets. We used the signal-level data provided in GEO matrix files.

Signal values were unlogged if necessary and normalized separately for each

data set by scaling each array to its 2% trimmed mean. To establish a unique

identifier per gene across species and platforms, we first mapped Affymetrix

probesets to NCBI Gene IDs as previously described (Dai et al., 2005) and

then mapped these to NCBI Homologene identifiers (Sayers et al., 2009).

The set of 1097 genes encoding mitochondrial proteins was defined as previ-

ously described (Pagliarini et al., 2008) and mapped to Homologene identifiers,

resulting in 1032 genes with homology between human and mouse.

Expression Screening

In brief, expression screening was performed as follows; the full details of the

computational algorithm are described elsewhere (Baughman et al., 2009). We

first treated each of the five microarray platforms separately. Affymetrix probe-

sets for the eight heme biosynthesis enzymes were chosen manually by

sequence matching to RefSeq transcript models. To avoid confounding the

differently regulated liver and erythrocyte heme synthesis pathways, we

included only the erythrocyte-specific form ALAS2 for ALA synthase. For

each data set, we calculated the GSEA-P enrichment score (Subramanian

et al., 2005) between the heme biosynthesis probesets (the query pathway)

and all other probesets matching the mitochondrial genes, using the Pearson

correlation coefficient as the base measure. We repeated this procedure with

arrays randomly permuted 100,000 times to generate a null distribution of

enrichment scores. Global false discovery rate (FDR) estimation was then per-

formed as previously described (Efron, 2007; Subramanian et al., 2005), and

the coexpression probability qgd (Figure 1A) was defined as 1 – FDR of probe-

set g in data set d. Data sets’ weights wd were defined as the average of qgd

with g ranging over the heme biosynthesis probesets. For each probeset,

we integrated the false discovery rates from all data sets by using a robust

Bayesian meta-analysis method (Genest and Schervish, 1985) to obtain the

final probability pg. Finally, we selected the best-scoring probeset for each
128 Cell Metabolism 10, 119–130, August 6, 2009 ª2009 Elsevier Inc
Homologene identifier and repeated this procedure across all platforms to

obtain a unique pg for each gene g with homology between mouse and human.

cDNA Clones

The cDNA clones from mouse and zebrafish for the candidate genes were

obtained from Open Biosystems. The zebrafish cDNA clone for slc22a5 was

isolated by RT-PCR using primers based on the sequence in the GenBank

database (XM_001340800) and total RNA from wild-type embryos at 19 hpf.

GenBank accession numbers are as follows: Zebrafish clones for slc25a39

(NM_200486), slc22a5 (XM_001340800), slc22a4 (NM_200849), isca1

(NM_001025178), c1orf69 (NM_001076635), and tmem14c (NM_001045438);

mouse clones for Slc25a39 (NM_026542), Slc22a4 (NM_019687), Isca1

(NM_026921), C1orf69 (NM_173785), and Tmem14c (NM_025387).

Zebrafish Animal Husbandry

Standard AB and cloche (clom39) strains were used in our studies and were

raised in compliance with IACUC regulations.

Zebrafish In Situ Hybridization

Digoxigenin-labeled probe synthesis and whole-mount in situ hybridization

was performed as described (Shaw et al., 2006a). For expression analysis of

slc22a4, slc22a5, slc25a39, c1orf69, isca1, tmem14c, and slc4a1, 24 hpf

embryos from matings between heterozygous cloche zebrafish were used.

Myeloperoxidase and aE3-globin (hbae3) expression was determined in mor-

pholino-injected AB wild-type embryos fixed at 24 and 48 hpf.

Morpholino Injections

Splice-junction-targeting morpholinos were ordered from Gene Tools (for

sequences, see Table S2). AB wild-type embryos were injected at the one-

cell stage and stained with o-dianisidine at 48 hpf as described (Shaw et al.,

2006a). The injected morpholino concentrations ranged from 0.4 to 0.9 mM.

The ferrochelatase-specific morpholino was as described (Wingert et al.,

2005). Zebrafish pictures were taken with a Nikon Eclipse TE2000-E micro-

scope and by using MetaMorph software.

RNA Isolation, cDNA Synthesis, and Real-Time PCR

Thirty control AB wild-type and morpholino-injected embryos were collected

at 24 hpf, and RNA was isolated using TriZol Reagent (Invitrogen) and genomic

DNA Eliminator columns (QIAGEN). RNA integrity was assessed on a 2%

agarose gel, and yield was determined on a Spectrophotometer (Beckman).

The First Strand cDNA Synthesis Kit (Roche) was used to generate cDNA

from one microgram total RNA. Primer sequences for the detection of aber-

rantly spliced mRNA species are in Table S3. Real-time PCR was performed

on an iQ5 Real-Time PCR Detection System (BIO-RAD). TaqMan Gene

Expression Assays were obtained from Applied Biosystems. Samples were

analyzed in triplicate, and normalized gene expression was calculated by using

the 2�DDCt method (Schmittgen and Livak, 2008).

Mouse Tissue Northern Blots

The multiple tissue northern blot was obtained from Seegene. Ten micrograms

of total RNA from mouse adult bone marrow and fetal liver were subjected to

northern analysis. The nylon blots were serially hybridized with 32P-labeled

mouse Slc25a39 and Gapdh probes by using standard procedures.

Mouse In Situ Hybridization

Nonradioactive in situ hybridization was performed by using antisense digox-

igenin-UTP-labeled RNA probes (Roche). Procedures were essentially as

described (Palis and Kingsley, 1995). In brief, five micron sections from para-

formaldehyde-fixed, paraffin-embedded outbred mouse embryos were

hybridized overnight at 52�C after proteinase K and acetic anhydride pretreat-

ment. Posthybridization washes included RNase treatment. Alkaline-phos-

phatase-conjugated anti-digoxigenin antibodies were developed by using

BM purple BCIP/NBT substrate (Roche).

siRNA Knockdown

siRNA oligos to Slc25A39, Slc25A37, and control oligos were purchased from

Dharmacon. A myc-tagged cDNA for mouse Slc25A39 was constructed in

pCMV-Tag5 vector (Stratagene) and cotransfected into MEL cells using the
.
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Amaxa nucleofection reagent and device. Western analysis with anti-myc and

anti-tubulin antibodies was performed by using standard procedures. siRNA

procedures in differentiating MEL cells and preparation of 59Fe saturated

transferrin were performed as described (Paradkar et al., 2009).

Yeast Complementation Analysis

The WT strain BY4741 and the isogenic MY019 (mtm1D) were as described

(Yang et al., 2006). Strains were transformed by the lithium acetate procedure

with URA3 2m based vectors that either expressed MTM1 from its native

promoter (pLJ063) (Luk et al., 2003) or zebrafish slc25a39 and mouse

Slc25A39. As needed, these transformants were induced to subsequently

shed the URA3-based vectors by growth on medium containing 5-fluoroorotic

acid (5-FOA) (Boeke et al., 1987). Cells were grown without shaking for 18–20 hr

to a final OD600 to midlog phase in SD (synthetic dextrose) medium (Sherman

et al., 1978). The whole-cell lysates prepared by glass bead homogenization

were analyzed for SOD activity by native gel electrophoresis and nitroblue tetra-

zolium (NBT) staining and for immunoblot analysis of yeast Sod2p (Luk et al.,

2003), Pgk1p (Jensen et al., 2004), and total Isu1p and Isu2p using an anti-

E. coli IscU antibody kindly provided by L. Vickery (Garland et al., 1999). To

test for complementation of the mtm1D loss of mitochondrial DNA, WT cells

transformed with either pRS426-ADH empty vector or with zSLC25A39 were

subjected to a MTM1 gene deletion using the mtm1::LEU2 plasmid pVC257

(Luk et al., 2003). The resultant mtm1::LEU2 derivatives were then tested for

growth on enriched yeast extract peptone-based medium containing either

fermentable (2% glucose) or nonfermentable (3% glycerol) carbon sources.

SUPPLEMENTAL DATA

Supplemental Data include three tables and three figures and can be found

with this article online at http://www.cell.com/cell-metabolism/supplemental/

S1550-4131(09)00196-X.
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