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The majority of inherited mitochondrial disorders are due to
mutations not in the mitochondrial genome (mtDNA) but
rather in the nuclear genes encoding proteins targeted to
this organelle. Elucidation of the molecular basis for these
disorders is limited because only half1,2 of the estimated 1,500
mitochondrial proteins3 have been identified. To systematically
expand this catalog, we experimentally and computationally
generated eight genome-scale data sets, each designed to
provide clues as to mitochondrial localization: targeting
sequence prediction, protein domain enrichment, presence of
cis-regulatory motifs, yeast homology, ancestry, tandem-mass
spectrometry, coexpression and transcriptional induction
during mitochondrial biogenesis. Through an integrated
analysis we expand the collection to 1,080 genes, which
includes 368 novel predictions with a 10% estimated false
prediction rate. By combining this expanded inventory
with genetic intervals linked to disease, we have identified
candidate genes for eight mitochondrial disorders, leading to
the discovery of mutations in MPV17 that result in hepatic
mtDNA depletion syndrome4. The integrative approach
promises to better define the role of mitochondria in both
rare and common human diseases.

A comprehensive catalog of mitochondrial proteins is essential for a
systematic approach to discovering related disease genes. However, the
best experimental and computational techniques fall far short of
accurately identifying the estimated 1,500 human genes encoding
mitochondrial proteins, of which only 13 are within the mtDNA.
Computational tools have long been available for detecting
N-terminal signal sequences that direct proteins to this organelle5.
However, not all mitochondrial proteins are imported by such
mechanisms, and moreover, computational detection of these
signals is imprecise. As a consequence, methods such as TargetP5

achieve only 91% specificity and 60% sensitivity, which gives rise to
a 69% false positive prediction rate when the method is applied
genome-wide, because the prior probability of a protein localizing to
the mitochondrion is only 7% (see Methods). More recently, experi-
mental approaches using tandem mass spectrometry (MS/MS)
have added to the current inventory of known mitochondrial
proteins, but owing to the bias toward abundant proteins, these
methods have identified only an additional B150 mitochondrial
proteins6,7. Hence, when used alone, existing approaches have
limited sensitivity and specificity. Recent studies have illustrated
how these limitations can be overcome by combining different
genomic approaches, but because such methods require high-quality

Table 1 Eight genome-scale data sets used to predict mitochondrial localization

Method Genome-scale data set Proteins predicted False discovery rate (%)

Targeting signal TargetP on human/mouse orthologs 4,532 69

Protein domain Pfam domain found only in eukaryotic mitochondrial proteins (SwissProt) 1,097 12

Cis motif Erra motif in human/mouse promoters 597 78

Yeast homology S. cerevisiae mitochondrial ortholog 763 34

Ancestry R. prowazekii ortholog 2,075 66

Coexpression Coexpression with known mitochondrial genes in human/mouse tissue atlases 867 40

MS/MS Mouse mitochondria (brain, heart, liver, kidney) 697 38

Induction Difference in gene expression during mitochondrial biogenesis induced by PGC-1a 2,361 68

Maestro 1,451 10

Eight individual methods and an integrated approach (named Maestro) were used to predict mitochondrial localization of all 33,860 Ensembl human proteins. The genome-wide false
discovery rate was estimated from large gold standard training data.
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genome-scale data sets and training data, they have been limited so far
to studies in model organisms8,9.

We sought to construct high-quality predictions of human proteins
localized to the mitochondrion by generating and integrating data
sets that provide complementary clues about mitochondrial localiza-
tion. Unlike existing computational methods that rely purely on
sequence features within the protein, we also take advantage of recent
insights into the ancestry and transcriptional regulation of the
organelle. Specifically, for each human gene product p, we assign a
score si(p), using each of the following eight genome-scale data sets
(Table 1 and Methods):

The targeting signal score (s1) indicates the presence or absence of
an N-terminal mitochondrial targeting sequence that directs protein
import into the mitochondrion, identified by a computational tool
called TargetP5.

The protein domain score (s2) records the presence of protein
domains found to be exclusively mitochondrial, exclusively non-
mitochondrial or shared, based on the SwissProt annotation of all
eukaryotic sequences.

The cis-motif score (s3) indicates the presence or absence of evo-
lutionarily conserved transcriptional regulatory elements that we pre-
viously discovered to be enriched upstream of mitochondrial genes10.

The yeast homology score (s4) indicates the presence or absence of
an S. cerevisiae ortholog with experimental evidence of mitochondrial
localization (Saccharomyces Genome Database annotation).

The ancestry score (s5) measures the sequence similarity to proteins
from Rickettsia prowazekii, the closest living bacterial relative of
human mitochondria11.

The coexpression score (s6) measures transcriptional coexpression
with known mitochondrial genes, using genome-scale atlases of RNA
expression across diverse tissues12. We use a neighborhood metric6 to
score each gene’s coexpression with known mitochondrial genes.

The MS/MS score (s7) indicates the number of tissues in which the
protein was detected in a previous proteomic survey of mitochondria
isolated from four mouse tissues6.

The induction score (s8) measures the upregulation of mRNA
transcripts in a cellular model of mitochondrial biogenesis. We induced
mitochondrial proliferation in a muscle cell line by overexpressing the
transcriptional coactivator PGC-1a13 and assayed genome-wide RNA
abundance with microarray profiling (see Methods).

Each of the above scores (s1–s8) can be used individually as a weak
genome-wide predictor of mitochondrial localization. We assessed
each method’s performance using large ‘gold standard’ curated train-
ing sets: 654 mitochondrial proteins (Tmito) curated by the MitoP2
database1 and 2,847 nonmitochondrial proteins (TBmito) annotated to

localize to other cellular compartments (see
Methods and Supplementary Table 1
online). As can be seen in Figure 1, the
limited sensitivity and the relatively low spe-
cificity of each individual approach can gen-
erate a large proportion of false positives
when applied genome-wide (Table 1).

To improve prediction accuracy, we inte-
grated the eight approaches using a naive
Bayes classifier8 that we implemented with a
computer program called Maestro (see Meth-
ods). We trained Maestro on the gold stan-
dard positive and negative data sets and
applied it to the Ensembl set of 33,860
human proteins. For each of the eight fea-
tures, we calculated a likelihood of mitochon-
drial localization by comparing performance
on Tmito to performance on TBmito at a range
of scores (Fig. 2a). We computed a composite
Maestro score by summing the log-likeli-
hoods of eight individual features (Fig. 2b)
in a naive Bayesian integration (see Meth-
ods). We selected a score threshold, depen-
dent on the application, and classified as
mitochondrial all proteins scoring above the
threshold. Using a conservative threshold of
5.65, corresponding to a false discovery rate

10+1086420
0

20

40

60

80

–2–4
Maestro score

P
er

ce
nt

ag
e 

of
tr

ai
ni

ng
 p

ro
te

in
s

3+30
+

2.
5201050

1.
5 2.

00
N/AN/AYe

sNo

InductionCoexpressionCis motif

0

50

100

(%
)

(%
)

(%
)

2+10

Mass
spectrometryAncestry

Protein
domain

<1
0
–1

0

10
–5

10
–3

>1
0
–3M

+
M

–
N/A M

±
0

50

50

0
0 1 2 No Yes

100

100

Yeast homologyTargeting signal

Training data

Scores for MPV17

T~mito
Tmito

Example: scoring MPV17

Step 1: compute individual scores; si

Step 2: convert scores to likelihood ratios;  LSi
 =

Step 3: compute Maestro score :

(s1 ...s8 ) = (2, N/A, no, yes, >10–3, 10, 0, 0)

(Ls1 ...Ls8 ) = (23, 20, 20, 25, 2–1, 23, 2–1, 2–1)

P(si | Tmito)

P(si | T~mito)

P(si | Tmito)

P(si | T~mito)

Maestro(MPV17) = 3+0+0+5+(–1)+3+(–1)+(–1) = 8

Σ log2

ba

c

Figure 2 Integration of eight genome-scale approaches. (a) For each feature, the distribution of scores

is plotted for the known mitochondrial proteins versus the known nonmitochondrial proteins. See

Methods for complete details. (b) An example of the computation of the Maestro score for a query

protein, MPV17. The arrows in a indicate the eight scores for MPV17, which are each converted to

a likelihood ratio based on the training data distributions in a (probability of score given Tmito /

probability of score given TBmito). The eight log-likelihood ratios are summed to compute the final

Maestro score in a naive Bayesian integration. (c) The distribution of Maestro scores is plotted for

training data, computed using cross-validation.
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Figure 1 Sensitivity and specificity of mitochondrial prediction methods.

Using training data of 654 known mitochondrial proteins (Tmito) and 2,847

nonmitochondrial proteins (TBmito), we estimate the sensitivity (percentage

of Tmito correctly predicted) and specificity (percentage of TBmito correctly

predicted) of each prediction method. The accuracies of the eight individual

data sets are shown at specific thresholds (see Methods), whereas the

accuracy of Maestro is shown at a range of thresholds (black curve), with

the chosen threshold marked by an asterisk.
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of 10% and specificity of 99.4%, Maestro properly predicted 71% of
the known mitochondrial proteins (Fig. 2c) as well as an additional
797 proteins (encoded by 592 genes) not in the training data. Nearly
half of these proteins or their mammalian orthologs are annotated
with gene ontology or keyword terms associated with mitochondria,
and the remaining 490 (encoded by 368 genes) have no apparent link
to this organelle and thus are completely novel predictions. Our novel
predictions show considerable overlap with MitoPred14, the best
existing computational prediction algorithm, but with greater sensi-
tivity and specificity on our training data (Supplementary Fig. 1
online). Although our method does not seem to be biased with respect
to protein function, molecular weight, charge or abundance (data not
shown), it seems to have lower sensitivity (14/38) for proteins
localizing to the outer mitochondrial membrane2, which may

represent evolutionarily recent mitochondrial acquisitions, given the
lower number of homologs in fungi and bacteria (data not shown).
The 490 novel predictions include a large number of previously
uncharacterized proteins as well as characterized proteins, such as
the Toll signaling pathway protein SITPEC15 (Fig. 3a), which we now
link to the mitochondrion.

To assess the accuracy of the 490 novel protein predictions, we used
a computational approach as well as two experimental techniques.
First, using tenfold cross-validation (in rotation, training on nine-
tenths of the data and reserving one-tenth for testing), we correctly
predicted 70% of Tmito (sensitivity) and 99.5% of TBmito (specificity)
at a genome-wide false discovery rate of 10% (comparable to the 71%
sensitivity and 99.4% specificity achieved without cross-validation).

Second, we used a targeted proteomics approach (using a technique
known as dynamic inclusion) to test 30 selected proteins to determine
if they were detected in highly purified liver mitochondria. We
specifically analyzed MS/MS spectra of peptide fragments with mole-
cular weights matching an ‘inclusion list’ of target peptides, chosen to
contain ten novel predictions, ten negative controls (TBmito proteins)
and ten positive controls (Tmito proteins not previously identified
using MS/MS). The purified mitochondrial extract from mouse liver
contained peptide spectra matching 100% of novel predictions, 0%
of negative controls and 70% of positive controls (see Methods and
Supplementary Table 2 online).

Third, we used epitope tagging and fluorescence microscopy to
validate selected candidates spanning a wide range of scores. We chose
nine novel predictions at a range of Maestro scores (6–36), two
negative controls (actin and GFP) and one protein (CORO2B) pre-
dicted to be mitochondrial by other computational tools5,14 but not by
Maestro (a score of –3). We tested mitochondrial localization of these
12 proteins using a combination of GFP tagging and fluorescence
microscopy (see Methods). When expressed in HeLa cells, neither of
the negative controls localized to the mitochondrion (Fig. 3), whereas
8/9 Maestro predictions showed mitochondrial localization (HIBCH,
GTPBP5, LOC91689, MPV17, TMEM70, H17, C6ORF210, SITPEC).
The CORO2B protein showed nonmitochondrial localization, consis-
tent with its low Maestro score. Together, these three approaches
confirm mitochondrial localization for 18/19 novel predictions and
support the robustness of the Maestro predictions.

The expanded collection of 1,451 human mitochondrial proteins
(1,080 genes) represents the most complete set to date and is useful
for identifying genes underlying human diseases characterized by
mitochondrial pathology. These disorders are clinically characterized
by neurological disease (seizures, strokes, ataxia), skeletal and cardiac
muscle myopathy, blindness, deafness, diabetes or lactic acidosis16,17.
The molecular basis for the majority of cases presenting with these
symptoms remains unknown, and although several hundred genes may
be involved, only a few dozen have been successfully identified using
strategies such as linkage analysis, homozygosity mapping, candidate
gene sequencing or chromosomal transfer18–20. These methods typically
implicate large chromosomal intervals containing many genes that, in
principle, can be prioritized by our list of mitochondrial predictions.

In order to assess whether this approach could be effective, we
applied it to all mitochondrial disorders with previously identified
underlying nuclear genes. We compiled a list of 56 nuclear genes
underlying clinical mitochondrial disorders by carefully reviewing the
literature16,17,21 (Supplementary Table 3 online). We then retrained
Maestro by conservatively removing all 2,004 genes related to
any disease phenotype according to the Online Mendelian Inheri-
tance in Man (OMIM) database. Of the 56 known mitochondrial
disease genes, Maestro correctly identified 86% as localized to the
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Figure 3 Experimental validation of novel mitochondrial predictions.

GFP fusion constructs of selected mitochondrial predictions or controls

were expressed in HeLa cells, stained with markers for mitochondria

(MitoTracker Red) and nuclei (Hoechst, blue) and were then analyzed by

fluorescence microscopy. (a) Nine novel Maestro predictions were analyzed,

and all but SLC35C1 showed mitochondrial localization. (b) Negative

controls actin, GFP and CORO2B (predicted to be mitochondrial by

MitoPred and TargetP but not by Maestro) were analyzed and showed

nonmitochondrial localization.
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mitochondrion. For the subset of the 29 human disease genes
identified through linkage analysis, Maestro typically reduced
the number of candidates from B100 genes in the linkage
interval to about three mitochondrial candidates and, in 86% of
the cases, correctly predicted the causal gene as encoding a mito-
chondrial protein.

We next applied our predictions to eight human mitochondrial
disorders that have been mapped to genomic intervals but for which
no causal gene has yet been identified (Table 2). For each disease, we
reduced the large number of linked genes to a manageable number of
candidates, relying on a threshold corresponding to 15% false dis-
covery rate. We identified mitochondrial candidates for all eight
disorders and provided novel candidates for five of them. Many of
the novel candidates represent genes of unknown function that
otherwise would not have warranted further investigation. The eight
diseases include a novel form of hepatic mtDNA depletion, an
X-linked lethal pediatric syndrome termed MEHMO, and multiple
mitochondrial dysfunction syndrome (Table 2).

For one of the eight diseases, hepatic mtDNA depletion syn-
drome, we went one step further and resequenced candidate
genes in patients and controls. In a companion paper4, we report
the sequencing of these predictions in three unrelated families,
which led to the discovery of segregating mutations in the prioritized
candidate gene MPV17. Despite prior literature suggesting peroxi-
somal localization of MPV17 (ref. 22), our analysis indicated a
high Maestro score for mitochondrial localization, as confirmed
through fluorescence microscopy (Fig. 3) and detailed subcellular
localization studies4.

In summary, we have integrated eight complementary genomic
approaches to expand the catalog of human mitochondrial proteins.
Whereas previous methods to compile this catalog have relied on
sequence properties of the proteins5,14, we have used additional
clues about their ancestry and gene regulation to improve coverage
and specificity. Although the augmented catalog represents a signifi-
cant step forward, we believe there are still another B500 genes yet to
be identified. With advances in high-throughput experimental meth-
ods to detect localization, refined methods to identify targeting signals,
and more extensive training data, the goal of a comprehensive
mitochondrial proteome will become achievable. Although the
expanded inventory of mitochondrial proteins has proven valuable
in discovering the molecular basis of monogenic diseases, in the future
such a catalog may enable us to chart the role of the mitochondrion in
common human disorders such as type 2 diabetes, cardiomyopathy
and neurodegenerative diseases. Finally, with increasing availability of
genome-scale data sets, the integrative approach applied here to the
mitochondrion can be extended readily to other cellular pathways in
order to tackle a broader range of human diseases.

METHODS
Human and mouse data sets. All genomic methods were applied to a common

set of 33,860 human proteins from the Ensembl database. For the experiments

performed on mouse models (MS/MS, induction, mouse tissue coexpression),

mouse proteins were mapped to human counterparts based on an Ensembl

orthology mapping that relies on synteny and gene sequence similarity

(EnsMart). As the Ensembl orthology mapping is performed at the gene level

(using the longest transcript for each gene locus), we computed a protein-level

orthology mapping with each protein inheriting all orthologs from its gene

Table 2 Novel candidates for mitochondrial diseases

Disease (OMIM) Clinical symptoms Linkage region Size (Mb) Gene loci Mitochondrial candidates

Hepatic mtDNA depletion Encephalomyopathy, liver

failure, hepatocerebral mtDNA

depletion

D2S2373– D2S2259 (ref. 4) 21.9 151 HADHB, HADHA, ASXL2, MRPL33,

PRO1853, COX7A2L, MPV17, CAD,

TP53I3, SLC30A6, EIF2B4, RBJ

MEHMO (300148) Mental retardation, epileptic sei-

zures, hypogonadism and hypo-

genitalism, microcephaly and

obesity

CYBB–DXS365 (ref. 24) 18.0 70 MGC4825, ENSG00000182432,

PDK3, GK, ACOT9, PRDX4

Friedreich ataxia 2 (601992) Autosomal recessive ataxia D9S285–D9S1874 (ref. 25) 21.1 147 HINT2, STOML2, NDUFB6, DNAJA1,

ACO1

Paragangliomas 2 (601650) Tumors of the head and neck

including the carotid body

D11S956–PYGM (ref. 26) 6.1 158 PRDX5, GLYAT, GLYATL2, GLYATL1,

FLJ20487, COX8A, MRPL16, BAD,

LRP16, TRPT1

Multiple mitochondrial dysfunc-

tions syndrome (605711)

Feeding difficulty, weakness,

lethargy, decreasing responsive-

ness after birth

A053XF9–D2S441 (ref. 27) 8.6 44 ENSG00000119838, MDH1, CCT4,

RAB1A

Striatonigral degeneration,

infantile (271930)

Choreoathetosis, abnormal eye

movements, seizures, mental

retardation

D19S596–D19S867 (ref. 28) 1.3 65 BCAT2, BAX

Optic atrophy 4 (605293) Autosomal dominant optic

atrophy

D18S34–D18S479 (ref. 29) 8.8 39 ATP5A1, ACAA2

Wolfram Syndrome,

mitochondrial form (604928)

Insulin-dependent diabetes

mellitus and optic atrophy

D4S1591–D4S3240 (ref. 30) 7.6 35 HADHSC, PPA2

Total 93.4 709 43

For each mitochondrial disease, (column 1) we narrow the search of gene candidates within the linkage interval (column 3) from all gene loci (column 5) down to a small number of
mitochondrial candidates (column 6, ordered by decreasing score, with novel Maestro predictions underlined).
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locus (Supplementary Fig. 2 online). As one human protein can have multiple

mouse protein orthologs, a human protein is assigned the maximum ortholog

score (separately for each data set).

Training sets. Tmito was obtained from MitoP2 and mapped to Ensembl

proteins using SwissProt/Trembl identifiers (707 unique SwissProt/

Trembl identifiers mapped to 654 Ensembl proteins). TBmito was created

from the set of all Ensembl human and mouse orthologs with GO anno-

tations to specific compartments outside of the mitochondrion

(Supplementary Table 1).

Targeting sequence (s1). A subset of the known nuclear-encoded mitochon-

drial proteins contain an N-terminal amphiphilic a helix that directs import

into the organelle. TargetP v1.1 predicts the subcellular location (mitochon-

drion, secretory pathway or other) on the basis of the N-terminal 130-residue

protein sequence. Because of the high false discovery rate, we increased

specificity by considering targeting signals in orthologous mouse proteins.

Human proteins were assigned scores of 0–2, indicating mitochondrial target-

ing signals present within zero, one or two of the ortholog pairs.

Protein domain (s2). Following MitoPred’s methodology14 for identifying

mitochondrial domains, we used the B60,000 SwissProt eukaryotic proteins

containing annotations for ‘subcellular location’ (release 48.8). We filtered

out low-confidence annotations (excluding ‘by similarity’, ‘potential’,

‘probable’ and ‘possible’ entries) and partitioned the rest into two sets: Smito,

containing 3,459 mitochondrial proteins, and SBmito, containing 15,322

proteins localized to other compartments (Supplementary Methods online).

Pfam domains were determined for each protein based on the Sanger Center’s

precomputed analysis. We assigned each Pfam domain a categorical score (M+,

M–, M± or N/A) on the basis of whether the SwissProt proteins containing

the domain were exclusively from Smito, exclusively from SBmito, found in

both Smito and SBmito, or not present in either set. Note that for cross-

validation studies, all human proteins were removed from Smito to avoid

overestimating sensitivity.

Cis-regulatory motifs (s3). Binding sites of three transcription factors have

been shown to lie upstream of mitochondrial genes: Erra (TGACCTTG),

Gapba (GGAARY) and NRF1 (GCGCNYGCGC)10. For each motif, we identi-

fied all genes with a binding site occurring within the 2-kb window surround-

ing the annotated transcription start site of orthologous genes in both the

human and mouse genomes. Of the three motifs, only Erra was specific enough

to be informative (likelihood L ¼ 4), and genes containing this motif were

assigned a categorical score of 1 or 0 depending on the presence of a motif in

the vicinity of the annotated transcription start site in both the human and

mouse orthologs.

Yeast homology (s4). The mitochondrial proteome of the yeast S. cerevisiae has

been extensively studied by experimental approaches. Using the Saccharomyces

genome database, which currently lists 749 mitochondrial yeast genes, we

identify potential mammalian homologs based on a simple all-versus-all

protein comparison between species. A human protein was assigned a catego-

rical score of 1 if the best yeast homolog (BLASTP expect value o1 � 10–3,

coverage 450% of longer gene) was annotated as mitochondrial in yeast and

was assigned a score of 0 otherwise.

Ancestry (s5). Because the mitochondrion is theorized to have evolved from a

bacterial endosymbiont, we searched for ancestral bacterial homology by

comparing all human proteins to the closest bacterial progenitor of mitochon-

dria, R. prowazekii11 (GenBank AJ235269). As homology is difficult to

determine at this distance, we assign each human protein a similarity score

(BLASTP expect) to the best R. prowazekii homolog.

Gene coexpression (s6). Because functionally related genes tend to share

expression patterns, we score every gene for its expression similarity to the

set of known mitochondrial genes (Tmito). We define a ‘N50’ metric as the

number of Tmito genes within a gene’s 50 closest neighbors (euclidean

distance)10. We used two expression studies that have been shown to be the

most informative for coexpression of mitochondrial genes: the GNF1 survey

(GEO GSE1133) of gene expression across 61 mouse tissues (GNF1M)12 and 79

human tissues (Affymetrix HG-U133A and GNF1B)12. Because not all

human transcripts were represented on the chips for the human GNF survey,

we increased sensitivity by combining data from human and mouse tissues:

the N50 values were averaged for orthologs present in both the human

and mouse GNF sets; otherwise, the value from either the human or mouse

GNF data was used. Probe set identifiers were mapped to Ensembl protein

identifiers via data in EnsMart for the HG-U133A chip. Probe sets were

assigned to all matching Ensembl proteins (for example, alternate transcripts),

and Ensembl proteins matching more than one probe set were assigned

the highest N50 score. This mapping was not available for the GNF1 chips;

thus, the mapping was computed by comparing the individual probe

sequences for the GNF1 chips against the Ensembl cDNA transcript sequences

(Mega BLAST with the following parameters: percent identity = 100%,

word size ¼ 20, nucleotide mismatch penalty ¼ �50) and ensuring that at

least 7 of the 11 probes per probe set all hit the same gene. To identify

genes with informative expression patterns, microarray rows were clipped

to smooth low-intensity values (any expression level o20 was replaced

with 20) and normalized to mean ¼ 0 and variance ¼ 1. Rows lacking a

post-normalization value 41.5 were excluded. A total of 29,806 human

transcripts had probes meeting the filtering requirements in either the human

or mouse GNF surveys and were assigned scores (0–50) based on the N50

metric. For cross-validation studies, the N50 metric was recalculated for each

set of training data.

Mass spectrometry (s7). We reanalyzed the data from a previous survey6

of mitochondrial proteins from four mouse tissues (liver, kidney, heart, brain)

by comparing the original spectra to the current Ensembl protein database,

with tryptic constraints and initial mass tolerances o0.13 Da in the search

software Mascot (Matrix Sciences). We then scored each human protein with

the total number of tissues (0–4) in which its mouse ortholog achieved a

Mascot score 420.

Transcriptional activation during mitochondrial proliferation (s8). Cultured

mouse myoblasts (C2C12 cells) were differentiated into myotubes and on day 3

were infected with an adenovirus expressing either green fluorescent protein

(GFP) or PGC-1a13,23. Extending previous studies23, gene expression was

measured in triplicate at three time points (days 1, 2 and 3) by hybridizing

targets to the Affymetrix MG-U74v2 set (A,B, and C chips containing 28,381

probe sets). Results from the 63 samples were deposited in the Gene Expression

Omnibus database (GEO). Data from the three chips were concatenated, and

then the microarray intensities were sample normalized via linear fit to the

median scan. The score represents fold change in expression; dividing average

intensity in PGC1a-treated cells (average of replicates on days 2, 3) by average

intensity in GFP control cells. Only those probes showing a significant

difference between case and control (P o 0.05; one-tailed heteroscedastic

Student’s t-test) were considered (5,927 probe sets).

Integration of genome-scale data sets. We explored a variety of computational

methods for combining features provided by the eight different genome-scale

data sets, including naive Bayes, decision trees and boosting (Supplementary

Methods). Of the methods we tested, a simple naive Bayesian integration, as

outlined previously8, yielded the most accurate predictions.

Briefly, we use the training sets Tmito and TBmito to convert each of the eight

individual genome-scale scores (s1ys8) into a likelihood ratio, defined as

L(s1ys8) ¼ P(s1ys8| Tmito)/P(s1ys8| TBmito), which is then simplified to

Lðs1 . . . s8Þ ¼ P
8

i¼1

Pðsi jTmitoÞ
Pðsi jTBmitoÞ

assuming that the features are independent. We define the Maestro score for a

gene product as log L (Fig. 2b), which we assign to every gene product in the

human genome. An underlying assumption of the naive Bayes procedure is that

the individual data sets are independent of each other, although in practice this

assumption can rarely be strictly satisfied, which may lead to overly optimistic

estimates of the likelihood for some genes. We tried to minimize this effect

by using a relatively high threshold to maintain a high specificity for the

prediction. Of note, we find that the Maestro score is linear with respect to

the true likelihood over a range of scores, but at high scores it clearly
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overestimates the likelihood (Supplementary Fig. 3 online). Therefore, the

Maestro score is a proxy for the likelihood, but care should be taken in

interpreting high scores.

In order to compare performance of data sets in Table 1 and Figure 1, we

chose the following thresholds based on the differential distribution of scores

on training data (Fig. 2a): targeting signal, 1; domain, M+; cis motif, yes; yeast

homology, yes; ancestry, 1 � 10–3; coexpression, 10; mass spectrometry, 1;

induction, 1.5.

False discovery rates. The false discovery rate (FDR) is the proportion of all

predictions that are false; FDR ¼ FP / (FP + TP), where FP and TP represent

the false positives and true positives, respectively, estimated from gold-standard

negative and positive training sets. If the sizes of the training sets do

not accurately reflect the prior odds (Oprior) of the predictions, then the

FP and TP must be first scaled to avoid underestimating the false positive rate.

We scale by the training set sizes by the following computation: genome-wide

FDR ¼ (1 – SP)/(1 – SP + SN � Oprior), where specificity SP ¼ TN/(TN + FP),

sensitivity SN ¼ TP/(TP + FN) and Oprior ¼ 1,500/21,000 (TN, true negatives;

FN, false negatives).

Validation by tandem mass spectrometry. We selected 30 proteins from

within the set of mouse proteins not previously identified in MS/MS studies6

that showed intermediate mRNA expression in liver tissue12 (10th–90th per-

centile, equivalent to expression values 80–1,300). Within this set, we selected

ten high-scoring novel Maestro predictions, ten randomly selected TBmito

proteins and ten randomly selected Tmito proteins. The ten novel predictions

selected were NP_848710, BC051227, Mterfd3, Lace1, NP_061376, NP_776146,

NP_080687, Q9DCB8, D5ertd33e and NP_079619.

Mitochondria were prepared from livers of C57BL/6J mice by a combination

of density centrifugation and Percoll purification, as previously described6, and

were tested for purity by immunoblot analysis. Duplicate lanes of purified

mitochondrial proteins were separated by size on a 10–20% gradient SDS-

PAGE. We excised 20 slices from each gel lane and then reduced, alkylated and

subjected them to in-gel tryptic digestion. Peptides extracted from the gel slices

were then analyzed by reverse-phase liquid chromatography tandem mass

spectrometry using an LTQ-Orbitrap (Thermo). Mass spectra were acquired by

targeted acquisition using inclusion lists derived from a set of 30 proteins,

representing between 5 to 12 peptides per protein, with MS/MS fragmentation

selection criteria of masses set within a very narrow mass window. MS/MS

spectra were quality filtered and then searched against the Ensembl mouse

protein database (see above) using the software tool Spectrum Mill MS

Proteomics Workbench. See Supplementary Methods and Supplementary

Table 2 for additional details.

Cell culture, transfection, and microscopy. Full-length cDNAs (Invitrogen and

Origene) corresponding to ten selected predictions (HIBCH, GTPBP5,

LOC91689, MPV17, TMEM70, H17, C6ORF210, SLC35C1, SITPEC and

CORO2B) and two negative controls were amplified by PCR (using Qiagen

Taq polymerase) with sequence-specific primers that contained restriction

enzymes sites. In addition, forward primers included a Kozak sequence

(CCACC), and reverse primers were designed to eliminate stop codons and

to be in-frame with the C-terminal GFP. The PCR products were cloned into the

pacGFP1-N2 vector (Clontech), and the sequence was verified on the 5¢ ends.

Approximately 1 � 105 HeLa cells were seeded in 24-well plates and

incubated overnight in DMEM supplemented with 10% FBS at 37 1C in a

humidified 5% CO2 atmosphere. We added 2 ml of Lipofectamine 2000

(Invitrogen) to 48 ml of Opti-MEM I Reduced Serum Medium (Invitrogen)

and incubated the mixture at 22 1C for 5 min. We added 2.5 mg of DNA to a

final volume of 50 ml Opti-MEM I medium, combined this with the transfec-

tion mixture and then added it to the cells. These transfected cells were

incubated for 24 h and then transferred to eight-well coverglass plates. Cells

were stained with 50 nM MitoTracker Red CMXRos and 1:10,000 diluted

Hoechst 33258 (Molecular Probes) for 30 min at 37 1C and were washed twice

with PBS. Cells were subsequently fixed with 3.7% formaldehyde in PBS for

15 min at room temperature. Cells were washed twice with PBS and mounted

in SlowFade Gold anti-fade media. Fluorescence microscopy was performed

with a 63� oil-immersion objective on a Zeiss wide-field microscope. Multiple

images were captured for the constructs and reviewed for colocalization of GFP

and MitoTracker red signals.

Data access. In addition to predicting the human mitochondrial proteome,

we performed the analogous Bayesian integration on all mouse proteins. Data

for the eight data sets and Maestro predictions are provided for the 33,860

human proteins (Supplementary Table 4 online) and the 31,037 mouse

proteins (Supplementary Table 5 online).

URLs. Emsembl and EnsMart: http://www.ensembl.org (10 January 2005 and 1

February 2005, respectively); MitoP2: http://ihg.gsf.de/mitop2 (10 January 2005);

Pfam: ftp://ftp.sanger.ac.uk/pub/databases/Pfam/ (23 January 2006); Saccharo-

myces genome database: ftp://ftp.yeastgenome.org/yeast (18 January 2005).

Accession codes. Microarray data are available from GEO (GSE4330).

Note: Supplementary information is available on the Nature Genetics website.
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