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■ Abstract The availability of complete genome sequences and the wealth of large-
scale biological data sets now provide an unprecedented opportunity to elucidate the
genetic basis of rare and common human diseases. Here we review some of the emerg-
ing genomics technologies and data resources that can be used to infer gene function to
prioritize candidate genes. We then describe some computational strategies for integrat-
ing these large-scale data sets to provide more faithful descriptions of gene function,
and how such approaches have recently been applied to discover genes underlying
Mendelian disorders. Finally, we discuss future prospects and challenges for using
integrative genomics to systematically discover not only single genes but also entire
gene networks that underlie and modify human disease.

INTRODUCTION

Elucidating the inherited basis of human disease fundamentally involves linking
genomic variation to clinical phenotype. Establishing this relationship, however,
can be challenging for several reasons. First, many disease phenotypes are difficult
to ascertain, may be heterogeneous, and can be influenced by environmental fac-
tors. Second, current genotyping technologies do not permit routine, comprehen-
sive characterization of genomic variation in a large cohort of cases and controls;
hence, it is still necessary to focus on variation within high-priority regions of
the genome, such as protein-encoding genes. Finally, even when phenotype and
a genotype are ascertained in a comprehensive and reliable manner, establishing
reliable linkage or association may be statistically challenging, due to the limited
number of cases, limited recombination resolution, or admixture.

Despite these challenges, human genetics has been extremely successful, es-
pecially for Mendelian diseases, during the past 15 years. The Online Mendelian
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Inheritance in Man (OMIM) website lists a total of 1655 inherited human diseases
for which genes have been identified, as well as an additional 1436 inherited dis-
eases for which an underlying genetic basis has not yet been discovered (OMIM
statistics, November 30, 2004). Much of this success can be attributed to the avail-
ability of genetic tools, initially genetic maps and more recently the sequence of
the entire human genome (59, 111). Botstein & Risch (14) suggest that the disease
genes discovered to date likely represent the easy ones, and that discovering the
genetic basis of the remaining Mendelian and complex disorders will be more chal-
lenging, perhaps due to the rarity of the phenotypes, due to genetic heterogeneity,
or because of complex genetics, i.e., multiple genes and modifiers contributing to
a phenotype.

Fortunately, genomics has sparked the creation of vast new functional clues
about genes and genomic elements that can aid in our search for human disease
genes. New technologies, such as microarrays and tandem mass spectrometry,
now enable genome-scale monitoring of RNA, protein, and metabolite abundance,
under baseline and perturbed states. Complete genome sequences are available for
a variety of organisms, facilitating the annotation of gene structures and regulatory
elements. Embedded within these vast databases of information are correlations
that weave together genes and genomic elements into functional networks. These
networks include well-characterized genes (including the ∼1500 genes previously
linked to human disease) as well as the vast majority of the genes and genomic
elements about which very little is known (Figure 1).

Figure 1 Distribution of literature citations per protein-encoding gene in the human
genome. Shown on the x-axis is the number of PubMed citations/gene, and on the y-
axis is the number of genes with that number of citations. Data were generated October
19, 2004.
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These data sets can be mined to systematically prioritize genes that can be tested
individually or collectively for variation in human diseases. Moreover, analyzing
these large-scale data sets may help shed insight into disease mechanisms for genes
implicated by association studies.

In this article, we review recent progress in utilizing and integrating functional
genomic data sources (i.e., integrative genomics) to expedite human disease gene
discovery. We begin with a brief overview of the traditional approaches for disease
gene discovery. Next we review the wide array of genomics technologies and data
sets now becoming available and how they are being used individually to aid in
our search for candidate disease genes. Then we discuss practical approaches for
integrating these data sets to boost sensitivity and specificity to construct more
faithful functional relationships among genes. Finally we discuss future oppor-
tunities and challenges for disease gene discovery through integrated analysis of
genome-scale information.

TRADITIONAL APPROACHES FOR DISEASE
GENE DISCOVERY

Two approaches have traditionally been used to discover genes underlying human
diseases: the candidate gene approach and positional cloning via linkage analysis.

The candidate approach relies on prior biochemical knowledge about the dis-
ease genes, such as tissues in which they are expressed or putative functional
protein domains. Genes are prioritized using these clues and sequentially tested in
association studies for segregating mutations or polymorphisms. Genes underly-
ing retinitis pigmentosa (27, 30), familial hypertrophic cardiomyopathy (35), and
Li-Fraumeni syndrome (65) were all discovered in this manner.

Positional cloning, on the other hand, does not formally require prior knowl-
edge about gene function. Traditionally these studies are performed in large fami-
lies with multiple affected members using microsatellite markers and other DNA
polymorphisms. Alleles of markers that segregate with the disease help delineate a
critical region within which the disease gene lies. This method has been quite effec-
tive for mapping the genetic variation underlying Mendelian disease, even though
the nature of positional cloning limits its resolution to relatively large regions
of the genome. Given the spacing of markers and the observed number of meioses,
the resolution limit is on the order of 1–10 centiMorgans (cM). In most favorable
cases the critical interval consists of a few dozen genes within 1 cM, but in other
cases the interval may include several hundred genes. Researchers must then sift
through the candidate genes within this critical region to identify mutations in
genes that segregate with the disease.

It is useful to consider the search for the cystic fibrosis (CF) gene—a posi-
tional cloning expedition that occupied several labs for many years—and how
the search might be performed differently today. In 1985, Lap-Chee Tsui and col-
leagues (106) used linkage analysis to map the disease to chromosome 7. By testing
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additional markers, they mapped the disorder to a 1.5-Mb interval flanked by the
protooncogene MET and the marker D7S8 (107). Researchers used chromosome
jumping and cloning in yeast artificial chromosomes to further delineate the inter-
val and relied on other clues—evolutionary conservation, presence of an mRNA
transcript, hypomethylated CpG islands—to ascertain gene structures. Simultane-
ously, clinical researchers discovered that CF patients exhibit defects in chloride
transport. By 1990 mutations in the CFTR gene were identified, and researchers
demonstrated that when the fully cloned gene was reintroduced into CF cells, de-
fective ion transport could be rescued (26, 82). Together, these studies established
CFTR as the gene underlying CF.

How might this search be different if it occurred today? First, the availability of
the genome sequence offers a virtually unlimited source of markers for positional
cloning (of course, many of these may be linked), thus assigning the disease to a nar-
rower genomic locus. After mapping CF to the interval flanked by MET and D7S8,
we could (in a single afternoon) examine the human genome browser (11, 56) and
rapidly identify 14 known and predicted gene structures within the 1.6-Mb interval.
We could then ask which genes are functionally associated with “clues” provided
by the disease. For example, it was known that CF was likely due to a defect in ion
channel activity and that the pancreas, lungs, and glands are particularly affected.
Today, we can immediately determine that three (MET, ST7, CFTR) of the 14
genes within this interval encode transmembrane proteins (92). Of these 14 genes,
ST7 shows nearly ubiquitous expression whereas MET exhibits limited expression
in bronchoepithelial cells. CFTR, on the other hand, shows enriched expression
in fetal lung, pancreas, and salivary glands (http://symatlas.gnf.org/SymAtlas/),
precisely the tissues most affected in CF. Hence, CFTR emerges as an attractive
candidate by joining these publicly available data sets. Of course, we would still
have to sequence the gene in patients and controls and demonstrate segregating
mutations as well as additional functional support, but this example illustrates how
rapidly we can prioritize candidate genes with freely available functional genomics
data.

In the next few sections, we review new genomic resources that are now be-
coming available and how they are being used in clever ways to discover genes
underlying human diseases.

HUMAN GENOME SEQUENCE AND ITS
FUNCTIONAL ELEMENTS

A draft sequence of the human genome was published in 2001 (59, 111) and more
recently in completed form (48a), representing the most valuable resource for
disease gene discovery. An international effort is currently underway to system-
atically catalog common variation across selected populations of humans, which
promises to expedite the mapping of human phenotypic traits by providing a vir-
tually unlimited collection of markers (83).
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Analysis of the human genome has revealed that of the 2.85 billion bases in
the genome, only 1.2% of the sequence encodes the estimated 22,500 proteins.
However, comparative sequence analysis suggests that about 5% of the genome
is under evolutionary selection based on human-mouse comparisons, and thus is
likely to be functionally important (113). Hence, in addition to protein-coding
exons, there are a vast number of “features” present in the genome’s landscape. In
principle, these additional, conserved regions represent functional elements that
may represent high-quality candidate disease genes.

One subset of the conserved elements encodes an estimated 200–400 micro-
RNAs (10) that help regulate the expression of thousands of human genes (54,
61, 115). MicroRNAs are evolutionarily conserved genes whose transcripts are
processed to form short, single-stranded 21–23 nucleotide RNA species that typ-
ically bind to the untranslated regions (UTRs) of genes to cooperate with a set
of proteins to either halt translation or promote RNA cleavage/degradation (8).
Another subset of conserved elements encodes thousands of antisense transcripts,
which are developmentally regulated and expressed in a tissue-specific manner to
regulate target genes (13, 57).

While the above elements are transcribed, another large fraction of conserved
features represent putative regulatory elements. Such features include cis-elements
that control expression of individual or small groups of transcripts, such as promot-
ers, enhancers, and insulators, or structural elements such as locus control regions
and matrix attachment sites that may control the architecture of large chromo-
somal territories (75, 85, 101). Comparative sequence analysis has helped in the
discovery and annotation of hundreds of such regulatory elements that are en-
riched upstream or downstream of functionally related genes (9, 115), and elegant
experimental approaches are being developed to elucidate their roles (64).

Although theoretically any nucleotide in the genome can contribute to human
diseases, in the near future we will still have to prioritize segments of the genome. In
addition to protein-encoding genes, these additional classes of functional elements
naturally expand the inventory of candidate genomic elements that ought to be
prioritized in disease gene expeditions. In the next few sections, we discuss some
experimental and computational approaches for collectively understanding the
function of these genomic elements.

INFERRING FUNCTION THROUGH GENOME-SCALE
DATA SETS

Having a handle on the function of a gene enables researchers to assess its candi-
dacy in an inherited disease. Currently, only a small fraction (∼25%) of all protein
encoding genes are well characterized using traditional approaches (Figure 1). His-
torically, candidate gene approaches for rare and common diseases have focused on
this small fraction of well-characterized genes, and, as stated above, these protein-
encoding genes represent only a fraction of all evolutionarily conserved elements.
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Figure 2 Some of the systematic strategies for inferring gene
function.

Genome-scale experiments afford an opportunity to rapidly annotate the other
genes in the genome so that they can be considered in such studies. These technolo-
gies include DNA microarrays, mass spectrometry-based proteomics, and genome-
wide RNAi screens. Thanks to sharing policies enforced by funding agencies and
journals, these data sets are being deposited into the public domain. Gene expres-
sion profiles of cells in response to radiation (108), proteomic surveys of malaria
during developmental stages (31), and genome-wide RNAi screens in worms (32)
represent just a few examples of the types of data that shed insight into many of
the genes. Such experiments do not provide an in-depth understanding of an indi-
vidual gene, and they tend to be noisy relative to traditional experiments. But they
do provide simultaneous snapshots of all the genes in the genome that collectively
can be useful. Simple “guilt by association” strategies can be used to mine these
large-scale data sets to infer the function of poorly characterized genes (Figure 2).
For example, two genes that share RNA expression profiles, or whose protein prod-
ucts physically interact, may be functionally related. Hence, these large-scale data
sets enable us to search for relationships between genes that may not be apparent
at the level of sequence. These different functional genomic experiments provide
complementary views of gene function and facilitate more reliable grouping of
genes based on shared roles in the cell. In the next few sections, we consider some
of the functional genomic data sets and analytical strategies already being used to
discover human disease genes.
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Fully Sequenced Genomes

Sequencing technologies and computational algorithms have matured so that se-
quencing and assembling entire genomes in a matter of weeks to months is rela-
tively straightforward. Draft genome sequences are currently available or will soon
become available for a number of vertebrates, including mouse, rat, dog, chim-
panzee, and chicken (37, 45, 113). In addition, hundreds of genome sequences are
available from other animals, plants, and fungi.

Phylogenetic profiling is a powerful computational strategy that leverages these
completed genome sequences to infer gene function (78, 100). The strategy is based
on the assumption that functionally related genes will likely evolve in a correlated
fashion, and therefore they are likely to share homologs among organisms. A
phylogenetic profile for each gene can be created in the form of a binary vector
representing whether the homolog of the gene is present in a set of sequenced
organisms. Phylogenetic profiles can then be organized based on similarity.

Recently, two groups published elegant studies (21, 62) in which they integrated
genetic linkage intervals with phylogenetic profiles to discover genes underlying
Bardet-Biedel syndrome (BBS). BBS is a multisystem disorder characterized by
retinal degeneration, obesity, polydactyly, renal and genital malformations, and
learning disabilities. Defective basal body function has been implicated in the
pathogenesis of this pleiotropic disease. Six genes associated with BBS have been
identified (BBS1, BBS2, BBS4, BBS6/MKKS, BBS7, and BBS8), and all encode
protein components of the flagellar and basal body (FABB). The two studies dis-
covered additional genes underlying other forms of BBS by beginning with the
clinical clue that previously characterized BBS forms are due to defects in FABB.

Li et al. (62) considered BBS5, which resides within one of the intervals as-
sociated with this syndrome. They compared three genomes—human, Chlamy-
domonas, and Arabidopsis—to compile a list of putative FABB components.
Specifically, they reasoned that because this apparatus is found in humans and
in Chlamydomonas but not in plants, proteins contained in the first two genomes
but not in the third would serve as a high-quality list enriched in the FABB list.
They noted that proteins mutated in five of the previously described six BBS pro-
teins were in this list of 688 proteins, and that 52 of the previously known 58 FABB
proteins were in this list, demonstrating the sensitivity of their approach. Finally,
they crossed this list with the list of genes residing within the 2q31 genetic interval
linked to BBS5. This is a large region, with ∼230 protein-encoding genes. Only
two of these genes intersected with the FABB proteome, and one had a splice site
mutation that segregates with the disease in one family, and additional genetic data
supported its involvement in BBS5.

Chiang et al. (21) investigated the molecular etiology of BBS3, which had been
linked to a 10-cM interval (containing an estimated 64 genes) in a single Bedouin
family. Chiang et al. reasoned that organisms containing orthologues to the known
BBS genes likely contain orthologues to as-yet-unidentified BBS genes. They
compared human genes with those from 11 fully sequenced metazoan genomes
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and identified a total of 1588 genes that shared phylogenetic profiles with the
known BBS genes. Four of these genes landed within the 10-cM critical region,
one of which harbored a truncation mutation that segregated with the disease
phenotype. These studies demonstrate the power of phylogenetic profiling for
homing in on candidate disease genes, especially for syndromes and for other
Mendelian disorders.

Global Profiles of RNA Expression

Systematic RNA expression profiling represents one of the earliest functional ge-
nomics technologies (1, 19, 86, 110). Some of these technologies, such as expressed
sequence tags (ESTs) and serial analysis of gene expression (SAGE), enable the
discovery and quantitation of expressed genes in a particular tissue or cell type.
Other technologies, such as oligonucleotide and cDNA microarrays, enable facile
profiling of a predefined set of genes. These technologies have been widely used
and have already yielded vast collections of freely available data (see Appendix).

How can these RNA expression resources be used for disease gene discovery?
First, some disorders are due to defects in genes that are expressed in a limited
number of tissues. Hence, catalogs of tissue-specific expression provide excellent
candidate genes. Second, these large-scale data sets can be mined, using coexpres-
sion analysis, to infer the function of poorly characterized genes or modules. We
consider each of these applications.

TISSUE EXPRESSION ATLASES Some human disease genes are expressed only in
tissues exhibiting a pathologic phenotype. Several rich sources of information
about tissue-specific expression are currently available.

The dbEST database at NCBI has >4 million ESTs derived from >7000 cDNA
libraries representing more than 600 cell types/states. GeneAtlas (www.symatlas
.org) is a tissue expression compendium of human, mouse, and rat samples that al-
lows users at the most basic level to view a gene’s expression profile across multiple
tissue types (96, 97). The Gene Expression of the Nervous System Atlas (GENE-
SAT) is intended to provide a spatiotemporal expression map of 5000 genes in
the developing and adult mouse brain. This resource may help spotlight genes ex-
pressed in specific neurons that are altered in specific human brain diseases (42).
Both of these valuable resources can be exploited in searching for diseases believed
to exhibit restricted patterns of tissue expression.

Recently, Katsanis and colleagues computationally mined dbEST to identify
clusters that exhibit preferential expression in the retina and integrated the results
with retinal disease gene loci (55). This approach identified 88% (22/25) of known
retinal disease genes exclusively expressed in the retina. It also yielded positional
candidates for 42 mapped but unidentified disease genes. In a complementary
approach, Blackshaw and colleagues coupled SAGE data and large-scale in situ
hybridization of 1085 transcripts that showed dynamic changes and preferential
expression in the retina to provide a valuable resource for mapping retinopathies
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(12). These strategies can be applied to numerous other disorders, such as car-
diomyopathies, muscular dystrophies, deafness, and others, where diseases are
likely to be due to mutations in genes expressed in those tissues.

COEXPRESSION ANALYSIS Atlases of gene expression in combination with coex-
pression analysis provide valuable insight into the function of poorly characterized
genes. Perhaps the richest sources of RNA expression data have come from cDNA
and oligonucleotide microarrays (19, 86), which have had numerous applications
in classifying cancers (41), elucidating pathogenesis of complex diseases (70), de-
ciphering mechanism of drug action (47), characterizing genomic activity during
various cellular processes, such as the cell cycle (22, 93) and response to serum
(51), and profiling expression across different tissues (96). Data submission stan-
dards have been established and enforced by a variety of journals and funding
agencies; hence, a wealth of expression data is now available from the Stanford
University Microarray Database (40), Gene Expression Omnibus (GEO) (28), and
Array Express (EBI) (15). As a public resource, these expression databases are
valuable substrates for coexpression analysis, which can detect gene properties
that are subtler than simple tissue-specific expression patterns.

Coexpression analysis attempts to group genes together on the basis of shared
expression similarity across a battery of “conditions.” Genes that exhibit coexpres-
sion likely share the same function (24, 52, 101). A variety of similarity metrics
(e.g., Euclidean distance, Pearson correlation coefficient, or Spearman rank corre-
lation coefficient) can be coupled with different clustering algorithms [e.g., hier-
archical clustering (29), k-means (101), and self-organizing maps (SOMs) (99)].
These algorithms often have varying strengths and applicability. A commonly
shared disadvantage of these algorithms is that they rely on similarity metrics
defined over all experimental conditions. Often one would like to organize genes
into different modules in which genes share similar expression profiles only among
a subset of experimental conditions. Recently, several “bi-clustering” algorithms
were developed that attempt to group genes together within the context of a subset
of experimental conditions (20, 36, 73).

Another computational strategy seeks to score genes on the basis of their ex-
pression similarity not to a single gene, but rather to a set of genes. Our group
introduced the “neighborhood analysis” algorithm (71), and a related methodol-
ogy was developed and applied to C. elegans expression studies (77). With these
simple strategies, the user defines a gene set corresponding to a pathway or process
of interest—it could even represent previously discovered disease genes for a re-
lated set of disorders. The algorithms then identify all other genes in the microarray
data set that share expression similarity to the gene set.

Tiranti and colleagues (103) applied neighborhood analysis to prioritize the
130 candidate genes located within the locus for ethylmalonic encephalopathy
(EE). Given the clinical features of the disease, they hypothesized that the defect
was due to mutations in genes related to mitochondrial functioning. Using neigh-
borhood analysis (71), they identified other genes within the interval coexpressed
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with well-characterized nuclear-encoded mitochondrial genes. One of these co-
expressed genes, HSCO, harbors homozygous mutations in all probands from the
four consanguineous families that were originally used for the mapping. Nearly
all of these mutations were loss-of-function mutations, producing premature stop,
frameshift, or aberrant splicing defects, providing definitive genetic proof of HSCO
involvement in EE.

Proteomics

Proteomics refers to the systematic analysis of proteins, protein complexes, and
their interactions (23). The technologies underlying proteomics are less mature
than microarray technologies for RNA expression, but they are already providing
complementary information that can be useful in studying disease processes. Two
types of proteomic data sets that are emerging are catalogs of organelle proteins
and genome-wide interaction maps.

ORGANELLE PROTEOMICS To date, proteomic catalogs of proteins residing in the
nucleolus, centrosome, nuclear speckles, golgi, splicesome, midbody, lysosome,
mitochondria, and nuclear envelope have been generated (2, 3, 7, 72, 81, 84, 87,
91, 114). Comprehensive analysis of subcellular localization in yeast was recently
achieved using large-scale epitope tagging (48).

The analysis of cellular substructures provides powerful functional clues about
genes as certain protein complexes and cellular organelles can be associated with
human diseases. For example, human respiratory chain disorders are often due
to defects in the mitochondrion. Cardiomyopathies are often due to mutations in
the cardiac myocyte’s contractile machinery (88). Recent proteomic surveys of
organelles can help expand candidate genes for diseases while also helping us to
understand the function of known disease genes.

Autosomal recessive malignant infantile osteopetrosis (ARO) is a genetically
heterogeneous disease characterized by a spectrum of phenotypes including severe
osteosclerosis, pathologic fractures, hepatosplenomegaly, pancytopenia, and reti-
nal degeneration (102). In many cases, mutations in TCIRG1 or in CLCN7, which
encode lysosomal proteins, underlie this disorder (33, 58, 98). Recently, scientists
discovered that mutations in a third gene, OSTM1, can also result in ARO, and that
the mouse orthologue of OSTM1 is mutated in another osteosclerotic mouse mu-
tant (17). Interestingly, a recent lysosomal proteomic survey (7) assigns OSTM1 to
this organelle, demonstrating how dysfunction of three proteins, all located in the
same organelle, can conspire in the pathogenesis of ARO. Here we see a striking
example of the emerging link between this heterogeneous Mendelian disease and
lysosomal biology.

PROTEIN INTERACTION MAPS Several methodologies now exist for high-
throughput construction of protein interaction networks based on yeast two-hybrid
(Y2H) screening, affinity tag purification coupled with mass spectrometry, directed
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peptide libraries, and protein arrays (23). Two large-scale, mass spectrometry-
based studies of protein interactions in yeast have been performed to date, each
focusing broadly on gene sets involved in signal transduction or genes involved
in the DNA damage response (34, 46). Both studies yielded interactions for about
25% of the yeast proteome. In contrast to mass spectrometry-based proteomics,
which interrogates protein complexes, Y2H detects pairwise interactions, and has
been applied on genome-wide scales to create interaction maps in yeast, C. elegans,
and Drosophila (39, 50, 63, 109).

Several recent studies demonstrate the value of protein interaction maps, even
from model organisms, in our search for human disease genes. Syndromes such
as xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodys-
trophy (TTD)—all of which have overlapping clinical and cellular phenotypes
associated with UV DNA damage repair—are associated with mutations in genes
encoding components of the TFIIH complex, which is involved in DNA transcrip-
tion and repair. A rare form of TTD, termed TTD-A, had been identified in three
families in whom the TFIIH complex exhibited biochemical instability; however,
none of the previously known components were mutated (112). Recently, Ranish
et al. (80) applied yeast proteomics to identify proteins in the polymerase II initia-
tion complex, identifying a previously unrecognized tenth member, TFB5. TFB5
is evolutionarily conserved and its orthologue in Chlamydomonas reinhardtii is
a suppressor of an UV-sensitive mutant (38). Ranish and colleagues discovered
mutations in TFB5 in patients with TTD-A and performed additional functional
studies to provide definitive evidence that TFB5 underlies this disorder (80).

Physiology and Phenomics

An organism’s DNA sequence, via RNA, proteins, and metabolites, is ultimately
expressed as a context-dependent phenotype—a phenotype could correspond to
yeast fitness on selected media or the outcome of a host-pathogen interaction in
humans. Several recent high-throughput approaches illustrate the utility of pheno-
typic screens in prioritizing disease genes. One class of such experiments utilizes
deletion strains, whereas another is based on systematic perturbations.

SYSTEMATIC DELETION PROJECTS Several efforts are currently in progress to sys-
tematically knock out each gene in a genome. If the resulting phenotype resembles
a disease phenotype, the underlying gene may represent a candidate gene.

Ron Davis’s group (89) developed systematic deletion strains of yeast that have
been used for various functional genomics projects. Steinmetz et al. (94) used
4706 viable deletion strains in a high-throughput assay for mitochondrial respira-
tory function to link novel genes to mitochondrial biology, yielding high-quality,
candidate genes for heritable respiratory chain disorders. They performed a retro-
spective analysis of known Mendelian mitochondrial disease genes and reported
that many of their yeast orthologues, when deleted, exhibit a respiratory petite
phenotype. Prospectively, their screen promises to accelerate positional cloning
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by providing 11 new disease candidates for mutational screens for 7 putative mi-
tochondrial disease loci.

Perhaps the most interesting use of the deletion strains has been the systematic
survey of synthetic lethal interactions (104). Synthetic lethality results when two
mutations in two different genes are each viable as single mutations, but lethal when
combined in the same haploid genome. This study began with a subset of 132 query
genes and generated all pairwise crosses with the ∼4700 mutants carrying viable
gene deletions. They discovered approximately 1000 synthetic lethal interactions
in their sampling. When extrapolated, their investigation implies a tremendous ge-
nomic load of epistatic interactions in humans. Such synthetic lethal screens help
group genes together based on functional redundancy and provide a complemen-
tary approach for annotating gene networks, as well as pairs that could be jointly
considered in human disease studies.

A repository of mouse knockout strains, analogous to deletion strains available
for yeast, was proposed by the Knockout Mouse Project (5). Currently, approx-
imately 10% (2600) of the mouse genes have been knocked out, although only
415 are readily available in the public domain via Jackson Laboratory. In addition,
there are several gene-trap consortia through which embryonic stem (ES) cells
can be obtained for genes of interest. However, knockouts to date have not been
subjected to a standard set of phenotyping protocols and are often characterized
using the expertise of the lab that generated the mice. Hence, many of these mice
are grossly normal, resulting in “no-phenotype” publications. In such cases, it is
likely that more subtle physiological parameters are not being appreciated. Efforts
are needed to systematically phenotype these mice, as was proposed by several
recent conferences and consortia (5).

A noteworthy study in the shift to examine physiological phenotypes at the
genome-wide level is Howard Jacob’s group’s (95) Herculean task of completing
measurements of a constellation of 239 parameters related to cardiovascular or
renal physiology. Genotyping intercrossed F2 rats allowed his group to map 81
quantitative loci in rat and, with comparative genomics, localize these loci to the
human genome.

HIGH-THROUGHPUT GAIN AND LOSS OF FUNCTION A new class of genome-wide
experiments attempts to systematically perform genetic or chemical perturbation
followed by cellular phenotyping (e.g., reporter gene activity or high-content mi-
croscopy). These approaches are possible in part due to large, high-quality collec-
tions of cDNAs, RNAi libraries, and growing collections of chemical compounds.
Some of these studies have also been facilitated by the development of new meth-
ods for introducing DNA and chemicals into cells in a high throughput fashion
(117).

For instance, Labow and colleagues tested the ability of 20,704 cDNAs to
activate transcription from an IL-8 promoter reporter construct, identifying an
unrecognized cAMP-like response element and a novel coactivator (TORC1) (49).
In a similar fashion, others have reported large-scale screens of minimal synthetic
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reporters seeking to identify genes that regulate AP1 or NF-κB activation (18, 67).
RNAi screens have been used to investigate deubiquitinating enzymes in cancer-
related pathways (16) as well as to study modulators of TRAIL-induced apoptosis
and NF-κB activation (6, 116).

Several genome-wide RNAi screens in model organisms have helped discover
entire catalogs of candidate genes for human diseases. For example, a genome-
wide RNAi screen in C. elegans identified 417 genes that modulate fat metabolism
(4). This screen employed a clever visual screen for fat-staining. The catalog
of fat-related genes identified in this study includes the human orthologue of a
human gene mutated in maturity onset diabetes of the young. The remaining genes
identified in this study represent excellent candidate genes for human obesity or
lipodystrophies.

Other Emerging Technologies

A number of other emerging technologies hold promise for facilitating disease
gene discovery. Genome-scale location analysis is a technology for systematically
detecting nucleic acid-protein interactions and was recently applied to discover
target genes of diabetes-related transcription factors (76). Similarly, genome-wide
profiling of RNA-binding proteins with their cognate transcripts (44) promises to
shed insight into human diseases related to RNA processing. Systematic pro-
filing of metabolites using NMR or tandem mass spectrometry, often dubbed
“metabolomics” or “metabonomics,” represents additional high-content readouts
of cellular function that will complement RNA and protein profiling (74).

INTEGRATING GENOME-SCALE DATA SETS

In the examples described thus far, human disease genes were prioritized using
information from a single type of functional genomics data set. In our search for
human disease genes, we would ideally rely on multiple tiers of support that an
individual gene is involved in a process before pursuing a costly association study.
There are biological and statistical rationales for integrating diverse genomic data
sources.

First, each technology interrogates different aspects of gene function. For ex-
ample, affinity tag-based protein-interaction methods tend to discover membership
in the same physical complex, whereas the Y2H technique discovers direct inter-
actions (stable or transient). Synthetic lethality screens tend to discover genes that
can compensate for each other, whereas coexpression analysis identifies genes that
are likely under similar regulatory control. Combining these complementary view-
points could be useful, providing a more comprehensive description of functional
gene networks.

Second, each technology tends to produce noisy data and can be associated with
its own inherent experimental limitations. For example, mass spectrometry-based
proteomics systematically misses low-abundance proteins (43). Oligonucleotide
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microarrays are sensitive to even low-abundance transcripts, but they can only
quantify transcripts predefined on the chip. Metabolite profiling can be power-
ful, but the class of metabolites surveyed in a single experiment may depend on
properties of the chromatography column. In addition, many of these large-scale
experimental data sets are extremely noisy, so making genome-wide predictions
using information from a single large-scale data set can lead to high numbers of
false positives.

Several recent studies have shown that integration of different types of func-
tional genomics data sets can produce more reliable predictions of yeast protein
function and interaction (53, 60, 105). Specifically, these studies demonstrated that
data integration can improve the sensitivity and specificity for detecting true func-
tional relationships among genes. The benefits of integration are particularly valu-
able in prioritizing candidate human disease genes, where genomic intervals may
be extremely large, and the cost of mutation screening or follow-up can be tremen-
dous. In the CF example presented earlier, both transmembrane domain predictions
and patterns of tissue distribution supported a role for CFTR in cystic fibrosis.

Here we briefly review ad hoc and formal approaches for integrating functional
genomics data sets and discuss how such an integrated approach has been applied
successfully to the identification of a human disease gene.

Approaches for Integrating Data Sets

A simple but intuitive approach for integrating data from diverse data sets uses
simple logical operators such as AND and OR. The AND rule predicts a functional
relationship only when all data sets agree, e.g., gene product A and gene product
B share similar functions if A and B interact in a protein interaction network AND
A and B exhibit coexpression in microarray experiments. The OR rule predicts
an interaction when any of the experimental data sets supports the functional
interaction. The AND rule is more stringent (and is expected to yield a higher
specificity), whereas the more permissive OR rule provides greater sensitivity to
detect functional interactions at the cost of specificity. Another way to combine
different sources is to use majority voting. In this case, a functional relationship is
predicted only when the majority of data sets agree. All of these methods suffer
from one major disadvantage: They are all based on the assumption that each
prediction from a data set has equal weight of confidence. This is not true because
some methods can be more reliable than others.

Machine-learning methods provide more sophisticated data integration proce-
dures that consider data reliability and redundancy as well as missing data, often
leading to better results. An effective method is Bayesian inference, which was
previously applied successfully in computational biology research, ranging from
the prediction of subcellular localization of proteins (25) to the prediction of pro-
tein interactions in yeast (53). Bayesian inference combines information from
heterogeneous data sets in a probabilistic manner, assigning a probability to the
prediction result rather than just a binary classification (105). Each individual data
set is essentially weighted by its accuracy and redundancy, which are determined
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using gold standard “true positives” and “true negatives.” Here we briefly review
the principles of Bayesian inference through a simple example.

Imagine that we are interested in identifying candidate genes for aging, and
that our hypothesis is that genes associated with reactive oxygen species (ROS)
underlie this process. Our goal is to enumerate all genes in the genome that might
be associated with ROS, as these will be reasonable candidate genes for aging.
We must begin with a prior estimate of the number of ROS-related genes in the
genome. With such an estimate we can compute the “prior odds” of finding an
ROS gene, given by Oprior = P(RO S)

P(∼RO S) . We can also consider the posterior odds
of finding an ROS gene given N genome-scale data sets with values g1 · · · gN :

Oposterior = P (ROS|g1 · · · gN )

P (∼ROS|g1 · · · gN )

Posterior refers to the fact that the odds have changed after we have additional in-
formation from the large-scale data set. According to Bayes’ theorem, the posterior
odds can be calculated as Oposterior = L(g1 · · · gN )Oprior , where L(g1 · · · gN )
is the likelihood ratio defined as

L(g1 · · · gN ) = P (g1 · · · gN |ROS)

P (g1 · · · gN |∼ROS)
.

The two probabilities are estimated separately using a positive control set of ROS
genes as well as a collection of genes known not to participate in this process.
When the data g1. . .gN are discrete, the probabilities are often constructed using
contingency tables. Estimating the two probabilities can be rather challenging
when N is large. However, if the N genome-scale data sets are independent of each
other (i.e., they provide uncorrelated data), in which case the scenario is often
termed naı̈ve, then the L can be simplified to

L(g1 · · · gN ) =
N∏

i = 1

P(gi |ROS)

P(gi |∼ROS)
.

In this case, different sources of data are decoupled. The likelihood ratio for each
data source can be calculated separately and multiplied together to form L. The
naı̈ve Bayesian network is more easily computed and yields optimal results when
the different data sets contain uncorrelated evidence; but even when this condition
is not met, the results are often useful.

Such Bayesian approaches have been valuable in predicting yeast protein sub-
cellular localization (25), protein interactions (53), and functional gene networks
(105) using publicly available data.

Discovery of a Human Disease Gene via Integrative Genomics

Can such integrated approaches be applied to human diseases? We recently com-
bined evidence from publicly available atlases of gene expression with organelle
proteomics data (using a simple AND rule) to home in on the gene underlying
Leigh Syndrome French Canadian variant (LSFC) (71).
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LSFC is an autosomal recessive disorder characterized by a subacute degener-
ation of the brainstem as well as by a cytochrome c oxidase (COX) deficiency. The
genes underlying four other inherited forms of COX deficiency were previously
identified, and all encode mitochondrial proteins involved in assembling this mul-
tisubunit complex (90). Based on the clinical features of the disease (lactic acidosis
and Leigh syndrome) and biochemical features of the disease (COX deficiency),
we hypothesized that the gene underlying this disease encodes a protein involved
in mitochondrial biology.

Beginning with this clinical clue, we integrated three sources of data: genome se-
quence, RNA abundance, and protein expression, with the goal of identifying genes
in the genome that encode proteins related to mitochondrial function (Figure 3).
First, we used genome browsers and ab initio gene predictions to compile a

Figure 3 Discovery of a human disease gene through the integrated analysis of large-
scale biological data sets (71). Leigh Syndrome French Canadian variant (LSFC) is
an autosomal recessive, fatal metabolic disease that was previously mapped to a 2-Mb
interval on chromosome 2. Its clinical and biochemical features suggested a disorder
secondary to mitochondrial dysfunction. To prioritize these candidates, the authors used
neighborhood analysis of publicly available microarray data sets to discover genes in
the genome (of unknown function) that are coexpressed with the known mitochondrial
genes. The authors also mapped tandem mass spectra (corresponding to peptides) from
a mitochondrial proteomics project to this interval. When the two large-scale data sets
and the genomic interval were integrated with a simple AND rule, one gene, LRPPRC,
emerged as a candidate that is coregulated with known mitochondrial genes and gives
rise to mitochondrial peptides. Based on this analysis, this gene was prioritized as the
top candidate and resequenced in patients and controls. Mutations in LRPPRC provided
strong genetic proof that LRPPRC underlies LSFC.
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comprehensive list of candidate genes within the genetic linkage interval, thus iden-
tifying 30 genes total. Second, we explored four large-scale, publicly available at-
lases of RNA expression (69, 79, 96) and applied neighborhood analysis (described
earlier) to score a query gene’s expression correlation with the known, nuclear-
encoded mitochondrial genes. Using this metric, we scored all the genes in the
genome for their correlation in expression to the previously known mitochondrial
genes. Third, we took tandem mass spectra (each corresponding to a single pep-
tide) from a mitochondrial proteomics project and mapped them directly onto the
genome.

We then integrated these three data sets to discover that exactly one gene,
LRPPRC, had a high neighborhood analysis score and peptide support from the
proteomics project (Figure 4). Hence, it emerged as a high-quality candidate gene
for a disease characterized by mitochondrial dysfunction.

Prior to screening LRPPRC for mutations in the patients, we needed to ascertain
its proper gene structure. By mapping the proteomic data directly onto the genomic
interval, we determined that LRPPRC actually had a 38-exon structure, contrary to
previous reports. We reasoned that the gene was misannotated and performed rapid
amplification of cDNA ends (RACE) to validate a 38-exon structure of LRPPRC.
With the complete gene structure in hand, we resequenced LRPPRC in patients,
parents, and unrelated controls to discover two mutations in this gene that underlie
LSFC. Hence, the combined analysis of genome, RNA, and protein enabled us to

Figure 4 Genomics-based disease gene discovery in the future. Genome-scale data
sets, like those described in the text, can be used to decipher the functional network
relationships among all the genes in the human genome. Via accessible databases, it
will soon be possible to cluster human diseases on the basis of clinical signs, symptoms,
etiology, and pathogenesis to help construct disease networks. Gene networks can be
mapped to disease networks via the ∼1500 known disease-gene relationships. Such
mappings will enable researchers to start with clinical features of a disease to discover
the gene networks that underlie and modify them.
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quickly move from clinical clues to a candidate gene, annotate that gene structure,
and then subject it to systematic resequencing. This example illustrates how one
can link clinical features of a disease to genes through the integrated analysis of
genomic data.

FUTURE PROSPECTS

Genome-scale experiments are generating a wealth of data that provide systematic
and complementary views of gene function. These resources, combined with new
computational methodologies, are already accelerating disease gene discovery.
Studies in yeast and in other model organisms have been extremely valuable: Not
only have they generated valuable data that has directly assisted in the discovery
of human disease genes, but they have provided important lessons on how best
to integrate diverse data sets to infer gene function. Botstein & Risch (14) sug-
gested that the disease genes discovered to date likely represent the easy ones, but
hopefully the integrated analysis of genome-scale information will facilitate the
discovery of those that remain.

We anticipate that in the very near future, strategies will be developed that sys-
tematically link clinical features to genomic elements (Figure 4). We can consider
two separate networks: networks of genes and networks of disease. Diseases can
be related to each other on the basis of shared clinical signs and symptoms, patho-
physiology, etiology, or cellular endophenotypes. Genes and genomic elements
can be related to each other using the growing wealth of functional genomics data
with the approaches described in this review. The established ∼1500 disease-gene
relationships provide links between these two spaces. For a new disease (possibly
complex) of unknown etiology, we can identify other disorders sharing similar
clinical features, a subset of which may be previously associated with human
genes. Gene networks containing these genes naturally represent excellent candi-
dates or modifiers for the query disease. The mapping between clinical features
(phenotype) and genes may become so robust that genes underlying a sporadic
disease may be identified on the basis of the presenting symptoms in a single indi-
vidual. Achieving this goal fundamentally requires integrating clinical informatics
databases with genomics databases and carries with it key challenges.

First, we need improved nosology, i.e., methods for disease classification. Tra-
ditionally, diseases have been categorized on the basis of pathophysiology or on
etiology, but often these characterizations break down and more ad hoc approaches
are used, resulting in the celebrated debate between splitters and lumpers (68). An
ontology-based approach to disease classification, in which a fixed vocabulary is
used to annotate diseases, can improve this process. The Unified Medical Lan-
guage System (UMLS) represents a set of knowledge sources developed at the
U.S. National Library of Medicine (http://umlsinfo.nlm.nih.gov) and is a promis-
ing resource for improving disease classification. Medical textbooks and other
clinical data sources need to adopt such a standard so that information can be
freely exchanged.
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Second, to construct disease networks, it is essential that we can access the
tremendous wealth of knowledge stored in medical textbooks, scientific literature,
and clinical journals. The recent collaboration between the Internet search engine
company Google and leading research libraries at Harvard University, Oxford Uni-
versity, Stanford University, University of Michigan, and New York Public Library
promises to provide searchable access to millions of texts in the public domain
or excerpted from copyrighted materials. In addition to making a great number of
current texts available online, this initiative will add nineteenth and early twenti-
eth century texts to the body of electronically searchable knowledge, transcending
limitations of predigital publishing technologies (66). When combined with im-
proved data-mining tools, such data sets promise to help us construct informative
and structured mappings among human diseases.

Third, we need more freely accessible genome-scale data sets. Most of the cur-
rently available large-scale data sets focus on a subset of protein-encoding genes,
making it difficult to extend functional predictions to other genomic elements. If
we are to implicate noncoding conserved elements in human disease, it’s essential
that we generate large-scale data sets that annotate their function. We also need
improved data standards and tools for accessing and visualizing data. At present,
genome sequence information and microarray data sets are beginning to become
freely available and accessible to all users via standard formats. Similar standards
and resources will be required for other large-scale data sets.

Finally, we need improved methods for integrating large-scale data sets that can
properly manage the nuances of these genomic data sets. Ideal integrative strategies
would handle categorical as well as continuous measures, would take into account
positive and negative controls, and would make reasonable predictions without
overfitting. Such strategies would also have to handle missing data or sparse data
as well as highly correlated data. Bayesian approaches represent a reasonable
approach to this challenge, but other techniques will certainly be needed.

Genomics is yielding a tremendous amount of information on the nature and
function of all features of the human genome. In the coming years, as compre-
hensive genotyping and sequencing technologies mature, we will see a rapid shift
from candidate gene studies to genome-wide association studies for rare and for
common human diseases. The challenge then will lie in determining which statis-
tical associations are true and relevant to disease biology. As we embark on these
exciting new studies, the integration of genome-wide association studies with func-
tional genomics data sets will enable us to spotlight not only single genes but also
entire networks of genes that underlie and modify human disease.
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APPENDIX Online resources for accessing large-scale biological data sets

Genome Browsers
UCSC http://genome.ucsc.edu/
Ensembl http://www.ensembl.org/
NCBI http://www.ncbi.nlm.nih.gov/Genomes/

Gene Expression Repositories
ArrayExpress EBI http://www.ebi.ac.uk/arrayexpress/
Stanford Microarray Database (SMD) http://genome-www.stanford.edu/microarray
Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/

Protein Databases
Database of Interacting Proteins http://dip.doe-mbi.ucla.edu/
Biomolecular Interaction Network

Database
http://bind.ca/

Human Reference Protein Database http://www.hprd.org

Pathway Databases and Resources
Reactome http://www.reactome.org/
KEGG http://www.genome.ad.jp/kegg/
BioCarta http://www.biocarta.com/
GenMAPP http://www.genmapp.org/

Disease Databases
Online Mendelian Inheritance in Man http://www.ncbi.nlm.nih.gov/omim/

Model Organism Databases
Mouse Genome Database http://www.informatics.jax.org/
Rat Genome Database http://rgd.mcw.edu/
FlyBase http://flybase.org
WormBase http://www.wormbase.org/
Saccharomyces Genome Database http://www.yeastgenome.org
Zebrafish Information Network http://zfin.org/

Other Resources
miRNA Registry http://www.sanger.ac.uk/Software/Rfam/mirna/
ChemBank http://chembank.broad.harvard. edu/






